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Abstract—We present a novel method for learning overcom- studying the receptive fields of binocular cells in the primary
plete dictionaries that are optimized for stereo image repre- visual cortex.

sentation. Our learning algorithm optimizes the construction of We study here the design of stereo dictionaries that have
dictionaries for both efficient image approximation and epipolar

matching between pairs of images. The multi-view geometry con- tN€ optimal properties for both image approximation and
straint is included in the probabilistic modeling that permits to ~ disparity or 3D scene structure estimation. We assume a
maximize the likelihood that natural stereo images are efficiently sparse stereo image model and we learn overcomplete dic-
represented with the selected dictionaries. Experimental results of tionaries. Motivated by the good performance of the ML
dlct|onar_y _Iearnlng for_ stereo anldlre_ctlonal images show t_hat methods for monocular images, we develop a novel ML
the multi-view constraints significantly influence the construction . L . .
of the dictionary, which leads to atoms with high anisotropic Method for leaming stereo dictionaries optimized for both
characteristics. image approximation and epipolar matching. We include the
epipolar geometry in the probabilistic modeling and hence
match pairs of atoms within the learning process itself. The
Multiple images of a scene taken from different viewpointsxperimental results show that the dictionary atoms learned
contain information about both 3D structure and texture of th® our algorithm present high anisotropy characteristics and
scene, giving a richer perception of the environment comparsgbstantially differ from atoms in single view learning. This
to a single view. However, dealing with this high dimensiondllustrates the importance of disparity matching for efficient
visual information poses many challenges, such as multi-viestereo representations.
compression and geometry estimation. The most important
requirement in these challenges is to have an appropriate multi- [l. STEREO IMAGE MODEL
view im model. The multi-view im model n . .- .
N age ode ner ult € age mode t?aged ° Developing the ML dictionary learning method for stereo
sparse image approximations with overcomplete dictionaries X - . )
. . IMages requires a definition of the stereo image model. Since
of geometrical atoms has shown good performance in d|s[- . . :
Stereo images capture the same scene from different view-

tributed multi-view coding [1]. In this model, each image iS .
. : o . oints, they are correlated by local transforms of image com-
approximated by a linear combination of meaningful featur&s

that represent the visual information of the scene. Atoms E)onents. If we decompose each image into sparse components
: that capture the objects in the scene, we can assume that

different views are related with local geometric transformt%e most brominent components are present in both images
that satisfy the multi-view geometry constraints. However, the P P P 9€s,

choice of the dictionary in [1] is empirical and not optimize ossibly under different local transforms [1]. Let us consider

S . s . o wo images: left ima and right ima , which have
for multi-view imaging. Certainly, by adapting the dictionary arse r%presentatioggj fn dictioga@ﬁngdegg respectively.

to the case of multi-view imaging, we can expect to achie\?% . . .
e images are approximated by sparse decompositions of

better performance in various applications. atoms up to an approximation efrar resp.ez), i.e..
This paper targets the problem of learning a dictionary P PP L P-Cr), 1.€.-

I. INTRODUCTION

adapted to the multi-view image representation model. Maxi- m

mum likelihood (ML) dictionary learning for natural monoc- y = Pa= Z ay, ¢, +eL,

ular images has been introduced by Olshausen and Field in k=1

1997 [2]. However, there has been little work targeting the B o

problem of learning stereo overcomplete dictionaries. Hoyer yr = ¥b= ;b”d}”‘ ter, @

and Hyvarinen have applied independent component analysis
(ICA) to learn the orthogonal basis of stereo images [3]. Theithere the set of indicefl,} and{r}, k =1, ..., m label the
algorithm resulted in Gabor-like basis functions tuned to diktoms that participate in the sparse decompositiong,cind
ferent disparities. Okajima has proposed a learning approagh respectively. The atoms are ordered in both expansions,
that maximizes the mutual information between the sterée., pairs of corresponding atoms are indexed with the same
image model and the disparity [4]. They have obtained resuttsunting parametek. The vectorsa andb denote the atom
similar to Hoyer and Hyvarinen. The stereo learning methodsefficients in the sparse representation of the left and right
in [3] and [4] have been primarily designed for the purpose @hage, respectively. We further assume that stereo images
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contain similar atoms that are locally transformed: Marginalizing overa andb we have that:
P(yL,yR,D = 0|¢7 ‘I’) =

UR =Y bntn ter =3 bnFin(d,) fen ()
k=1 k=1 =//P(yL,yR,D:O|a,b,<I>,\II)P(a,b|<I>,\II)dadb.(5)

where £, (") qenotes the.tralnsform of an atogy, in yr We first need to define the joint distribution of coefficieats

o an atomy,, in yr, and it differs for eactt = 1,....m. anqp, given dictionariesP and ¥, denoted as’(a, b|®, ¥).

This model assumes that both stereo imagesrafeparse, | o s assume that pixels keep their intensity values under

i.e., composed ofn atoms. The motivation behind this is thate |ocal transforms induced by the viewpoint change. This
left and right images typically contain image projections of th§ssumption holds in multi-view images when the scene is as-

same 3D scene features, thus the number of sparse compongii$ed to be Lambertian, and when atom transforms correctly
will be approximately the same. _ represent the local object transforms. Under this assumption,
Due to the change of viewpoint on the 3D scene, varioys; 5 stereo atom paif;, ., corresponding to the same object

types of transforms are introduced in the image projectiyg ihe scene and linked with a transforf,, the following
space. Most of these transforms can be represented by é'a%ality holds (see Lemma 1 in [5]):

2-D translation, rotation and anisotropic scaling of the image

features. Such transforms are efficiently represented with a (yr, ) = L@L,@% (6)
parametric dictionary whose construction is built on these Jir

transforms. Given a generating function defined in the where J;,. is the Jacobian of the transforth,.. Using the
Hilbert space, the parametric dictionafy = {g,},er is sparse image model and Eq. (6) we obtain the following
constructed by changing the atom indexe I' that defines probabilities:

rotation, translation and scaling parameters applied to the

generating functio. This is equivalent to applying a unitary Pbrlar, ¢ vbr) = Plailbr, éu,¢r)

operatorU () to the generating functiog, i.e.: g, = U(v)g. _ 1 exp (L(bT _ 4w )2), 7)

We define the dictionarie® and ¥ as structured dictionaries “b 207 Vi

built on the same generating functign but using different \here 2, is the normalization factor and? is the variance
sets of parameters’;, for @, andI'p for ¥. To simplify the of the zero-mean Gaussian noise that models the difference
notation, we introduce the following equivalencies:= g, ),  betweenb, and a;//J;,. We further assume that pairs of

%(L) €Tz, andy, = g o, WP € I'r. When the dictionaries coefficients(a;, b,) are independent, which is usually the case
.

are defined this way, the transform of one atepto another When image decompositions are sparse enough. Then, the

atom, reduces to a transform of its parameters, i.e., distribution P(a, b|®, ¥) is factorial, i.e.:
M M
— — / — —
Fir () = Flr(g%@)) =U(y )gvl(L) =g, = Pr. 3) P(a,b|®, ¥) = H H Par,byldr, vy) =
[1l. STEREO DICTIONARY LEARNING VY t=tr=t
We now formulate the probabilistic framework for the P(a)P(b)HH\/P(br|al;¢l;¢r)P(al|br;¢l;¢r>; (8)
maximum likelihood learning of overcomplete dictionaries 1=1r=1

@, ¥ that are used to represent stereo imaggesand yr, where we assume that priors on coefficients in each image
respectively. We want to define the likelihood that sterep(q,) and P(b,) are independent of the atoms. Although in
images captured by two cameras with a relative p@€eT) reality the distribution of the coefficients would depend on an
are well represented by a set of atom pairs related by ge@bitrarily chosen dictionary, imposing the independence of
metric transforms, under the sparsity prior. In other wordge coefficients with respect to the dictionary during learning
we want to simultaneously learn the dictionarsand ¥  \ould actually lead to inferring a dictionary that gives the
that approximate well the stereo imaggs and yr, given same prior distribution of coefficients for all types of images.
the sparse stereo image model in Eqg. (2). Moreover, we wanior modeling the priors on coefficients, we assume that the
to maximize the probability that the stereo images given Ryefficientsa, and b, are i.i.d. and drawn from a Bernoulli
the model (2) satisfy the epipolar constraint, i.e., that thfistribution over the activity of coefficients, where a coefficient
epipolar distance between all corresponding pointsy@n s different from zero with probability and equal to zero with
and yr is equal to zero p = 0). Maximization of this probability g. Thus, forp < ¢ the Bernoulli distribution can
probability is crucial for learning dictionaries that have atomgell model the prior on the sparse coefficieatandb. If we
with good epipolar matching properties, which is important ithke = 1/(1+ €'/*), we have:
applications involving scene geometry estimation.

Formally, we want to solve the following optimizationp(a) — iexp (_M) ard P(b) = iexp (_M)
problem: A A 2 A
where || - ||o denotes the, norm and\ controls the level

(®, %) = arg %1%(<§1X log P(yr,yn, D =0[®, ¥)). (4)  of »sparseness” of coefficients. For sparse vectomnd b,
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the probabilitiesP(a) and P(b) are highly peaked at zero. The energy function thus consists of four summation terms:
Thus, we can approximate the probabiliB(a,b|®, ¥) by 1) the approximation error term; 2) the epipolar constraint
its value at the maximum, since it is a product of a zero-megarm; 3) the coefficient similarity term; and 4) the sparsity
Gaussian distribution and discrete distributions tightly peakéetm. Unfortunately, the obtained energy function is not con-
at zero [2]. Eq. (5) then becomes: vex. We use the Expectation-Maximization (EM) algorithm to
find a local minimum. EM alternates between two steps:
P(yr,yr, D =0|2,¥) ~ P(yL,yrla,b, &, ) « E step, that minimizes the energy over the coefficieats
P(D =0l|a,b, ®, ¥)P(a,b|®,¥), 9) andb, while keeping the dictionaries fixed. Coefficients
are found using a modified version of the Matching
Pursuit (MP) algorithm. It selects the atoms that give the
minimal value of the energy function, and then removes
the contribution of those atoms from the stereo images.
Thus, it selectsn atoms for each of the stereo images.
M step, that minimizes the energy over the dictionaries

where we have used the fact that= 0 does not bring more
information toyr,yr than ®, ¥. To evaluate our likelihood
function, we next need to find the probability that the epipolar
distanceD is equal to zero given the stereo image model in
Eqg. (2), i.e., we need to fin®(D = 0|a, b, &, ¥). The prob-
ability of epipolar matching for the stereo image pair can be ° . ; - : .
modeled by the product of probabilities of epipolar matching g’ei)nedrg)’ ;&%Iisﬁﬁgﬁlﬁg (t;gijnggcggiglrﬁeﬁe:—hh; can
for pairs of atoms that participate in sparse decompositions T i L ) N '

of the left and the right image, i.e. whose coefficientsand In the first _|tera.1t|on,.the dictionaries are initialized randqmly.
b, are different from zero. If the epipolar estimation error ig—he f°”°"‘{'”9 |ter-at|ons take the vglues_ for .the coefficients
assumed to be Gaussian of zero mean and variaBgcewe and the dictionaries from the previous iteration. The E step

can model the probabilit’(D = 0fa, b, ®, ¥) as: and M steps are iteratively repeated until the convergence is
U ' achieved. The learning should be performed from a large set
P(D=0|a,b,®,¥) = of data, i.e., from different multi-view image pairs.
1 1 LY IV. EXPERIMENTAL RESULTS
— ex _ T aj T br D 1y U . (10 . . . . . :
ZD p( 20%, ;; (@)Z{br)Ds (o1, v )> (10) In practical applications, the benefits of the stereo image

h he indi ‘ ) i< th lizat model in Eq. (2) depend on the discretization of the dictionary
whereZ denotes the indicator functiony, is the normalization 52 meters: translations, rotations and scaling. Among those,

factor andD (¢, ) is the epipolar distance between stereg o scajing parameters are the most important since they

atoms. Th'$ d|stance can be easily e_valuate_d by Summ'{i‘igectly define the shape of atoms. As translations and orien-
over the epipolar distances betwee_n points paired by the loggl,ng are highly dependent on the position of the sensors, we
transform between the corresponding atoms. choose here to focus on learning only the scaling parameters
At this point, we have defined all components of thg¢ the atoms. A parametric dictionary is then constructed by
objective maximum likelihood function in Eq. (9), excephpnying to the generating function the learned scales and a
P(yz,yr|a b, ®, ¥). This probability can be modeled by agiscretized set of translations and orientations.
Gaussian white noise of varianeg: The stereo image model given in Eq. (2) does not put
Plyr,yrla,b,®, ) = P(e, +er) any assumpti_o_n on the ty_pg of_ cameras used for stereo
1 1 , , image acqwsmon. As omnidirectional cameras are suitable
= —exp <F(|yL —®al; + |yr — \Ilb||2)>,(11) for capturing 3D scenes, we perform the Ie_arnlr?g for stereo
21 o7 omnidirectional images mapped to spherical images. For
where we have used the fact that the sum of two zeregpresenting spherical images, we use the formulation of a
mean Gaussian random variables is also a zero-mean Gausgigionary on the 2-D unit sphere [1]. The generating function
random variable, and; is the normalization factor. We canis a Gaussian in one direction and its second derivative in
now rewrite the ML learning problem in Eq. (4) as thdéhe orthogonal direction. We have tested the proposed stereo

following energy minimization problem: dictionary learning algorithm on our "Mede” database, which
consists of 54 multi-view omnidirectional images of an indoor
(@, ¥)" = argmin(min E(a, b, @, ¥)), (12)  environment. Two views from the database are shown in Fig. 1.
’ " From three different scenes, we have formed 216 pairs of
where £/ denotes the energy function given as: images with different translatio™ between cameras, while

the rotationR is identity. The database is constructed from

1
E(a,b,®,¥) = o~ (llyz — ®a|3 + [yr — ¥b[3) +  a variety of images such that the learned dictionaries can be
I

uoM used afterwards on images outside the training set.
1 We learn here five pairs of scaling parameters. The initial
Z(a)Z(b.)D s e . i
Jr20%, Z; (aZ(b) D (1, ¥r) values of scalesy("™), (1), o) and g% for the learning

=
. Ml M ) algorithm have been chosen randomly, and they are given in
Y the first two columns in Table I. The atoms of the initial
+— b, — ) + —(||al|lo + [|b]lo). (13)
207} ;;( Vi 2)\(” o+ libflo) scales are shown in the first row in Fig. 2. The whole
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TABLE |
INITIAL AND LEARNED SCALE PARAMETERS FOR THE LEFT AND THE
RIGHT IMAGE, FOR DIFFERENT VALUES OF THE PARAMETER.

Initial dictionary Learned dictionary

p=0 | p=1 | p=3
[a@ ] 8@ T @O T T T I T T a0 ]
13.15] 5.98 861 | 6.34 | 1082 8.68 | 6.86 | 10.17
14.06 7.78 2219 | 7.30 | 16.92 | 13.72| 14.84 | 9.95

(b) 6.27 | 10.47 | 3.40 | 356 | 3.81 | 5.05 | 2.82 | 10.26
1413 | 1458 | 25.88 | 22.95| 26.00 | 19.73 | 25.19 | 18.21
F|g 1. Two views from the "Mede” database. 11.32 14.65 14.52 14.78 557 11.25 12.73 15.63

(@@ | 5 [ o [ 50 [ o® [ 5 [ oa® [ 50 |

6.58 6.42 294 | 269 | 358 | 473 | 272 | 9.36

- . , . 1471 922 | 1218 5.04 | 11.72 | 8.43 | 1479 9.66
dictionary is built from these atoms by shifting them at allG=—=+— 5T >c 932030 2557 1894 2275 1786

pixel locations and rotating in four orientations. To see the 985 T 1592 | 660 | 6.80 | 570 | 1056 | 6.72 | 10.13

influence of the part of the objective function that relies op 13.00 | 1459 | 15.87 | 16.05 | 15.08 | 14.52 | 13.08 | 14.97

the multi-view constraint, we have introduced a facgtathat

multiplies the second and the third term in the energy function. Initial scales in® Initial scales in®

When p = 0 the learning takes into account only the imag

approximation term, while increasingputs more importance m“ m‘.

on the multi-view correlation terms. From Fig. 2 we can se

that for p = 0, the learned atoms are more elongated alona  Learned scales i, p =0 Learned scales i, p =0

the Gaussian direction, while narrower on the direction «

the second derivative of the Gaussian. These results are m.‘ ”“.

consistency with the previous work on dictionary learnin_

for image representation [2]. However, when we increase Learned scales i, p =1  Leamed scales iW, p = 1

we obtain different results for atoms scales (see Table “m ”m

The atoms become more elongated along the direction

the Gaussian second derivative and narrower in the directi...

of the Gaussian. In addition, fgg > 0 the learned scales Leamed scales i, p =3 Leamed scales i¥, p =3

generally tend to give smaller atoms than o= 0. These m.‘ m‘.

two effects of including multi-view geometry in the dictionary

learning process are due to the local nature of the epipoia

constraint. Namely, the depth of the scene changes rapidly

around object boundaries leading to different disparity arfip. 2. Subset of atoms in the initial and learned dictiorsafi® the left and
. . . . . right images. All atoms are on the North pole.

epipolar matching in these areas. Since the object boundaries

are represented by 2D discontinuities on the image of a 3D
scene, the epipolar geometry is satisfied along the discontinuity VI. ACKNOWLEDGMENTS
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