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wide range of optimization problems such as data clustering
Abstract— An improved Differential Evolution (DE) that [2], power plant control [3], optimization of non-linear
incorporates wavelet-based mutation and crossover operations isfunctions [4], etc. However, for maintaining the diversity from
proposed. In the mutation operation, the scaling factor is one generation of the population to the next, mutation takes an
controlled by a wavelet function. In the crossover operation, the jmportant role in the evolution process. The presence of
trial population vectprs are modified by a'WaveIet'function. The mutation can help assuring the reached solution is a global
wavelet theory applied is to enhance DE in exploring the solution optimum; but a too vigorous mutation in every iteration step

space more effgctlvely for a better solution. A suite of benchmark may slow down or even destroy the convergence of the
test functions is employed to evaluate the performance of the algorithm

proposed method. It is shown empirically that the proposed . . .
method outperforms significantly the conventional methods in  On doing the mutation and crossover operation, we can have

terms of convergence speed, solution quality and solution stability. the solution space to be more widely explored in the early stage
of the search by setting a larger searching space; and it is more
likely to obtain a fine-tuned global solution in the later stage of
.  INTRODUCTION the search by setting a smaller searching space, based on the

Differential Evolution (DE) has been well accepted as paropertles of wavelet [7]. The wavelet is a tool to model

. ; O . seismic signals by combining dilations and translations of a
powerful algorithm for handling optimization problems during. . . -
; simple, oscillatory function (mother wavelet) of a finite
the last decade. Proposed by Storn and Price [1], DE i§ a’.. . .
: . L . duration [9]. Its properties enable us to improve the
population based stochastic optimization algorithm tha : .
. ; . : erformance of DE. In this paper, mutation and crossover
searches the solution space by using the weighted difference ~_ . . : . . .
. . . opérations with a dynamic searching space by incorporating
between two population vectors to determine a third vectQr, : .
e ome wavelet functions [8] are proposed. The resulting
No separate probability distribution has to be used so that the, .. ) .
: . . mutation and crossover operations aid the DE to perform more
scheme is completely self-organizing [1] [12]. It is a new,. . )
. ) fficiently and provide a faster convergence than the standard
member to the class of Evolutionary Algorithms (EA) th AP . ;
o . . : , E [1] in finding the solutions for a suite of benchmark test
imitate the process of biological evolution. Owing to th : " . ) : X
. . unctions. In addition, it achieves better solution quality and
population based strategy, EAs are less possibly gett

trapped in a locally optimal solution. As a result manll%llaher solution stability.
bp y op ) ' Y This paper is organized as follows. Section Il presents the

researchers view EAs as global optimization algorithms, . ; )
| ’ : ... Operation of DE with wavelet mutation and wavelet crossover.
mportant examples of EAs include the Genetic Algorith

(GA) [5] and Evolutionary Programming (EP) [6] rExperimental study and analysis are given in Section IIl.
Similar to GA. DE use)é evo?utionarygoperatioﬁs to guide ﬂ?enchmark test functions are used to evaluate the performance

population evolving towards the global solution within thg t?e rlJ\r/Oposed method. A conclusion will be drawn in

given solution space. Comparing with other optimizationeC lon V.

algorithms, DE is easy to implement, requires fewer

parameters for tuning, and have a relatively fast convergence Il. DEWITH WAVELET MUTATION AND WAVELET

speed. A simple vector subtraction is able to generate a CROSSOVER

random direction of exploration over the solution space. DETo realize DE, a randomly generated population over the

can also offer a high degree of variations for the populationgelution space will first be obtained. The population of

search the solution space. It has been successfully applied $eldtion vectors are then successively updated and swapped;
until the population converge to the optimum. The pseudo

code for the standard DE (SDE) process is shown in Fig. 1. In
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if f(uig)<f(Xig)
otherwise.

(WMWC-DE) is proposed and the pseudo code for it is shovifi .1 = ' (4)
in Fig. 2. The details of both the SDE and the WMWC-DE are

discussed as follows.

this paper, a DE with wavelet mutation and wavelet crossover u;
Xi g

where f()] is the fitness function. Because of this selection
A. Sandard Differential Evolution (SDE) operation, DE is expected to have high optimization ability.
When the condition to stop further evolution is satisfied, for

generation of evolution, with each vector contdinslements ?é(:éﬂglg’ tr?e Fz)arleSo?itthnaglnrgngit?]utmhget:eg: slfnﬁg?ité)%nagiﬁet}?rg}
of parameters. LePyy be the population of the current ' 9

generatiorg, and x; , be thei-th vector in this population: solution (see Fig. 1).

DE attempts to maintain a populationN vectors for each

) begin
P = (Xi,g) = 01..Np-1g = 01..,0ma 1) Initialize the population
x.=(x..)j= 0L..,D-1 While (not termination condition) do
ig jigl/ Ui begin
. o ) Mutation operation by equation (2)
Before the population can be initialized over the solution Crossover operation by equation (3)
space, the boundary of the searching space should be specifig Evaluation of the function
The population should be uniformly and randomly distributed Select the best vector by equation (4)
in the searching space. Once initialized, DE creates a mutate end
vector, v 4 for each target vectox;y by using the mutation end
operation. In particular, DE adds a scaled, randomly sampled;
vector difference to form a third vector. The mutation Fig. 1. Pseudo code for SDE.
operation is realized by the following equation:
Vig =Xig+F [@xﬁ,g _sz,g)(z) begin

Initialize the population
While (not termination condition) do

where F is the scaling factorr; andr, are two different begin

integers which are randomly generated from {0, 1Np=1}. Update the new value of by equation (14)
The number of mutations taking place in each generation is Mutation operation by equation (2)

also random. To complement the differential mutation search Crossover operation by equation (3)
strategy and increase the diversity of the perturbed parametg Modifying the trial population vectors by

equation (14)
Evaluation of the function
Select the best vector by equation (4)

vectors, DE employs a method called uniform crossover for the
mutated vectors. Each vector element pgjr, and vj;gq

generates a new trial vector element,. The crossover end

operation is realized by the following equation: end

U = (u )_ (Vj ,i,g) if @andj O <Cr Fig. 2. Pseudo code for the proposed DE.
be T (Xj,i,g) otherwise.

(3) B. Differential Evolution with Wavelet Mutation and Wavelet
Crossover (WMWC-DE)
where Cr [0, 1] is called the crossover rate, which is a user-
defined value that controls the fraction of parameters that arén the SDE mutation operation, the valueFofn (2) is a
copied from the mutantrand;(0,1) generates a random valudixed value within the range of [0, 1] determined based on the
between 0 and 1 for thigth parameter. The algorithm alsdkind of application. The choice of this value relies very much
ensuresy;; 4 gets at least one parameter valugas[1]. Then on experience or expert knowledge. Yet, a fixed valu& of
the population is updated. If the trial vector has the fitnetskes no advantage of the benefit brought by the evolution. We
function value lower than that of the target vector, replace tpeopose the value df to diminish with the increase of the
target vector in the next generation; otherwise the target veatomber of iteration. Moreover, for some complex optimization
retains its place in the population for at least one generatiorpodblems like finding the minimum point of a multimodal
iteration. The selection operation is therefore realized by thictions with many local minima, a large number of iteration
following equation: for solving the problem is required in SDE. It reduces the
efficiency of the SDE. This leads to the proposed WMWC-DE
in which the valueF is determined by a wavelet mutation
function. The degree of freedom of the trial vector will then
be increased. More ‘random’ vector directions would be
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generated during the mutation operation. Moreover, in tii@e Morlet wavelet integrates to zefrgperty 1). Over 99%
crossover operation, we proposed a second wavelet mutatibthe total energy of the function is contained in the interval of
that varies the searching space based on the wavelet theory.—2%< x< 25 (Property 2). In order to control the magnitude
the wavelet function output is inversely proportional to thgnd the position of(X), a function Wap(X) is defined as
number of iteration; when the searching population 1i8llows
approaching the optimal solution, the effect of the wavelet )
mutation and crossover operations will be decreasing until the b
DE ends eventually (see Fig. 2.) By adopting this method, the, (x) :iw(x;) (8)
effort on searching and evaluating those local minima, which’ Ja a
are far away from the global minimum, in the later iteration is
reduced. Therefore the total number of iteration deceases. Where a is the dilation parameter and is the translation
result is a wavelet-mutation-wavelet-crossover-based [PBrameter. Notice that
(WMWC-DE).

Yap(x) = w(x) 9)
C. Wavelet Mutation and Wavelet Crossover

X

1. Wavelet theory z//avo(x):%z//(g). (10)
a
Certain seismic signals can be modelled by combining
translations and dilations of an oscillatory function with a finitg ¢51ows that W.o(x) is an amplitude-scaled version of
a,

duration called a “wavelet”. A continuous functigf(X) is ) , .
.\ , . e L Y(X). Fig. 4 shows different dilations of the Morlet wavelet.
called a “mother wavelet” or “wavelet” if it satisfies the

following properties: The amplitude ofiy , 4 (x) will be scaled down as the dilation

Property 1: parameten increases. This property is used to do the mutation
operation in order to enhance the searching performance.

[Cwooax=0 ©)

a=1 a=5 a=10 a=50

In other words, the total positive momentum€x) is equal ns ns ns ns

to the total negative momentum @fx) . . D‘W’ ”V\A/\f 0~

Property 2: 05 05 05 05

- -1 -
2 0 2 0 0 10 20 0 20 -00 0 100

~+00
2
I |¢/(X)| dx <eco (6) a=100 a=500 a=1000 a=10000
oo 1 1 1 1

. . ) . 05 05 05 05
Hence, most of the energy i@(X) is confined to a finite

duration and bounded. The Morlet wavelet [2], as shown il
Fig. 3, is an example mother wavelet: 05 0s s 0s
8]

0" 0 f—we—] O O

, 60 5 0 000 O 1000 om0 © 200 [ 1
=r-3 «10°
x) =6 2 co¢bx 7 10
Fig. 4. Morlet wavelet dilated by different values of the paranaeteraxis:a,

y-axis: Wap(X) )

2. Operation of wavelet mutation

The mutation operation is used to mutate the vectors in the
population. The proposed wavelet mutation (WM) operation
exhibits a fine-tuning ability. Consider (2), the mutation
operation is modified as follows.

' Vig = Xrg T F [qxrl,g ~Xr,. )’ (11)
] where
Fig. 3. Morlet wavelet.
F=@ao(#) (12)
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Fo 1 (¢ (13) approaching-1, the mutation will tend to a minimum. A larger

_\/al'// a value of |01 gives a larger searching space for the solution.
By using the Morlet wavelet in (7) as the mother wavelet, °

2 =5

_ 1 {52 FRLEEN

F=—e cos 5 — )
Ja a, © N
(14)
where g 10 N\, ;
Jwm =
—In(g)X(l—ij +In(g) B \05
a=e T (15) . '
10" | 4

. . . . \02
T is the total number of iteration arid is the current number '
of iteration; ¢, is the shape parameter of the monoton .

1 —

increasing functiong is the upper limit of the parametar If 0 01 02 03 04 05 06 07 08 09 1 [
F is positive approaching 1 d¥ is negative approachingl, _ _
the mutation will tend to a maximum. Conversely, wien Fig. 5. Effect of the shape paramelgy, toa with respect td/T .

approaches 0, the mutation will tend to a minimum. A larger
value of \F\ gives a larger searching space for the solutiowhen |a1 is small, it gives a smaller searching space for fine-

When |F| is small, it gives a smaller searching space for finining.  Referring toProperty 1 of the wavelet, the total
positive energy of the mother wavelet is equal to the total

negative energy of the mother wavelet. Then, the sum of the

positive ¢ is equal to the sum of the negative when the

number of samples is large agdis randomly generated, i.e.
The crossover operation is done with respect to the elements

of the trial vector (after mutation) in DE. In general, various

methods like uniform crossover or non-uniform crossover [§ >0 =0 for N - o, (20)

10] can be employed to realize the crossover operation. T e"

proposed wavelet crossover (WC) operation, which exhibits . .

fine-tuning ability, is realized by adding a second wavel ere_N is the number of sample;. Hence,.the overall positive

mutation following the original crossover operation. ThEutation and the overall negative mutation throughout the

details are as follows. The crossover after the first mutatiglﬁggjet:?yn gi:/eesnesgzlt){e:hesoiirigi Igtaa;)il?t?tlgr%ﬂllsrenzgn d;:;s
takes place according to (3). Let, =lu, Cgrees . - . .

P i gto @) _ &t (u""g’ul_"g’ ’uD‘lv"g) deviation of the solution values upon many trials). As over
(whereg is the current generation number d@nds the number ggo4 of the total energy of the mother wavelet function is

of elements in the vector).be théh vector after CI’O-SSS)VG.I’ for contained in the intervahR.5, 2.5], ¢ can be generated from
the second wavelet mutation. Its element valug, is inside [-2.5, 2.5] randomly. The value of the dilation paramats

tuning.

3. Operation of wavelet crossover

the vector element’s boundarypérari“n, paral.]. The set to vary with the value of/T in order to meet the fine-
resulting vector is given bs“i . :(ﬂo,- o ,al.i,g,...,aD—l.i,g), and tuning purpose, wher€ is the total number of iteration artd
_ ) is the current number of iteration. In order to perform a local
Ui = Ujig +0-x(pararjnax _uj,i,g) ifo>0 (16) search whert is large, the value o& should increase agT
e U +a'x(ujig - paquin) ifo<o’ increases so as to reduce the significance of the mutation.
B 5 B Hence, a monotonic increasing function governingnd t/T
O=Wa0(f) an .
is proposed as follows.
g = iw(ﬂj (18)
\/g a t Jwm
. . —In(g)X(l—fj +In(g)
By using the Morlet wavelet in (8) as the mother wavelet, aze T (21)
Y’ /
- =] /2
o =%e (a) Co{g[ﬂ)j (19) where ¢, is the shape parameter of the monotonic increasing
a a

function,g is the upper limit of the parametar The effects of
the various values of the shape paramefgp, to a with

If o is positive (o > 0) approaching 1, the mutation will tendrespect tot/T are shown in Fig. 5. In this figure is set as

to a maximum. Conversely, it is negative ¢ <0)

725



Proceedings of 2009 APSIPA Summit and Conference, Sapporo, Japan, October 4-7, 2009

10000. Thus, the value o#

is between 1 and 10000.Table 2. Number of iteration and the valud=dbr SDE.

Referring to (14), the maximum value ef is 1 when the

random number ofp=0 anda=1(t/T = 0). Then referring to

(16), the VeCton_Ji,g has a large degree of mutation. It ensu

that a large search space for the mutated vector is given atgm’s function

early stage of evolution. When the valt/@ is near to 1, the
value of a is so large that the maximum value of will

become very small. For example,taT =0.9 and{,,, =1, a

= 400; if the random value af is zero, the value of will be

equal to 0.0158. A smaller searching space for the mut

vector is given for fine-tuning.
After the operation of wavelet mutation and crossove

new population is generated. This new population will rep

the same process. Such an iterative process will be termi

when a defined number of iteration is met.

1.
A. Benchmark test functions

BENCHMARK TESTFUNCTIONS ANDRESULTS

A suite of eight benchmark test functions [11] are used to
the performance of the proposed WMWC-DE. Many differ
kinds of optimization problems are covered by these functi

which can be divided into three categories. The first cate
covers the unimodal functiorfg, f, and f; that are symmetrig
with a single minimum. The second one covers the multim

functionsf, andfs with only a few local minima. The last ore

covers the multimodal functiorfg, f; andfg with many local
minima. The details of these functions are shown in Table

B. Experimental Setup

The performance of SDE [1], DE with wavelet mutation, &
the proposed WMWC-DE are evaluated by finding
minimum values of the benchmark test functions.
following simulation conditions are used:

* The shape parameter of the wavelet mutatidg,(): It is

chosen by trial and error through experiments for g
performance for all functions. {,,,=1 is used for all

functions.

< Initial population: It is generated uniformly at random.
«  Crossover probability constar@r = 0.5

The number of iteration for all algorithms and the valueB @
for SDE are given in Table 2.

C. Resultsand Analysis

In this section, the simulation results for the 8 benchmark
functions are given to show the merits of the WMWC-DE.

Test function No. of iteration| Fixed F Weight|
Rosenbrock’s function 25 0.85
ré&xartic function 60 0.5
200 0.5
Maxican hat function 20 0.5
Six-hump camel back function 20 0.5
Generalized Griewank’s function 100 0.5

afesgeralized Ackley's function 500 0.5
Schwefel's function 500 0.5

t .

S,Eghle 1. Benchmark Test Functions.

“Test function Domain range Optimal point
Rosenbrock’s function - 204& x < 2048 Min(fy)=
o= hook.. ) + (x-9] AL 120
Quartic function - 12&x < 256 Min(f)=

test 07, ([, ..., 1])=0

e, (X) :_Z[Dg ]

ons,

5@'3"som’s function - 300< X, ,X, <300 | Min(f3)=
f, X )= - cos(x, )(£os(x,) O fo(n,n))= -1

bda , ,
exp(=((x, =) + (X, + 1)%))

Maxican hat function - 5< x,,X, <15 Min(fs)=
L.¢ ()= - SiNG)sinGe,) My ) =1
! XX,
Six-hump camel back function | -5< x,,x, <5 Min(fs)=

1p] 1 f5([-0.08983,

hg’ &)= 47 - 2.1x] +§Xf XX, + 0.7126]=

h f5([0.08983,
€ -0.7126])

&G +4% =-1.0316
Generalized Griewank’s function -1200< x, <600 Min(fe)=
f6(0)=0

:)Op _ 1 30 - 30 i 1

(%) 74000; X ﬂ co NG +
Generalized Ackley’s function - B4 x <32 Min(f7)=
12 ) f7(0):0
f, K F- ZOex[E— 0. %‘;x‘ J
f
1 30
—exp—> Cox, |+20+e
307
Schwefel’s function -500< x <500 Min(fg)=
%0 f5([420.9687, ...,
tﬁf’&) = (x sing/[x)) 420.9687])=
A = -12569.5

results shown are averaged data out of 50 trials.
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Rosenbrack function Maxican function
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i : Standard DE Standard DE
| s — — — DE with wavelet mutation and crossover s : : — — — DE with wavelet mutation and crossover
DE with wavelet mutation L7 SR et DE with wavelet mutation
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1581
" " : SR RN SN - ]
] 73
o @
£ £
= T 08s 1
1F
0sr
-0.55 1
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0 ] 2 4 B8 g 10 12 14 16 13 20
iteration iteration
Fig. 6. The fitness of the Rosenbrock function. Fig. 9. The fitness of the Maxican hat function.
Quartic function Six-Hurmp Carnel Back function
500 T T T T 0.1 T T T
! g Standard DE e Tl 12
BOO g FRICELELE -{ — — —DE with wavelet mutation and crossover ———DE W!th wavelet mutat!un and crossover
4 : DE with wavelst mutation EElviliiwavelet mutatmn.
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W i
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11 i 1 1 i I i I 1 i
2 4 B g 10 12 14 16 13 20
iteration iteration
Fig. 7. The fitness of the Quartic function. Fig. 10. The fitness of the Six-hump camel back function.
Easom function Griewank function
EIELNER DS 1800 ? : Standard DE
— — ~ DE with wavelet mutation and crossaver \- . : — — — DE with wavelet rutation and crossover
DE with wavelet mutation 1400 | aiOa0a3aRaaaanaas DE with wavelat mutation
1200 |- ....... Biaoooaaat L ......................................
100 k- Hanonana: EA— ; ..... L AP FERP PP S TPREE TS
£ = b i
[N SN N BN B e SN J R S e S S ;
1] 20 40 60 a0 100 120 1400 160 180 200 DD 10 a0 =0 a0 a0 50 70 50 E] 100
iteration iteration
Fig. 8. The fitness of the Easom’s function. Fig. 11. The fitness of the Generalized Griewank function
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Ackley function was inverted for minimization. The result is shown in Fig. 8.

* Standard DE For this function, the convergence rate of the proposed
. i | =~ DE with wavelet mutation and crossover WMWC-DE is much higher than that of SDE. While the

P00 M e ) S L L DL performance of WMMC-DE is nearly the same as DE with

wavelet mutation only, this experiment shows that the wavelet
crossover does not take any advantage on reaching the
1 minimum. But the wavelet crossover does not worsen the
performance of DE. The solution quality is nearly the same for
all algorithms when the number of iteration increases. Taking
advantage of the properties of the wavelet function to control
N the scaling factor in the wavelet mutation, the population can
R SR ISR S be kept in the small area near the minimum point.
N R For unimodal functions, the proposed WDE can offer a
S [ B ey ey higher rate of convergence as compared with SDE. By

fitness

o w0 o ab 20 w0 0 0 w0 adopting the Morlet wavelet on controlling the scaling faBtor
feration the degree of freedom of the trial vector can be increased.
Fig. 12. The fitness of the Ackley function. More vector directions would be generated during the mutation
operation. Moreover, based on the fine-tuning ability of the
- o wavelet crossover operation, the population can easily get into
I DS the small region around the global minimum.

i : — — — DE with wavelet mutation and crossowver
: : DE with wavelet mutation

OO0 Fh- e ......

2. Multimodal functions with a few local minima

6000 Two multimodal functions with a few local minima are

evaluated with the three algorithms. Functipis the Maxican
hat function and functiorfs is the six-hump camel back
function. All of them contain some local minima within the
searching space. The results are shown in Fig. 9 and Fig. 10.
For functionf, andfs, it is found that all the searching methods
perform similarly in reaching the optimal point. While the
functions contain a few local minima, all the searching
14000 I S S U S S R methods do not get trapped in some local minima easily. The
050 0w Am =0 004040 S0 advantage brought by the wavelet mutation and wavelet
crossover to the searching is not obvious for these functions.
Although the wavelet mutation and wavelet crossover do not
1. Unimodal functions bring significant improvement to reach the minimum of these

] ] ) o functionsthe convergence rate of the proposed WMWC-DE is
Functionf, is the Rosenbrock function, which is also callegj 5 pit higher than that of the SDE.

the Banana function. The global minimum of these functions
is inside a long, narrow, parabolic shaped flat valley. Owing40 \uitimodal functions with many local minima
the smooth and symmetric characteristic fgf the main
purpose of testing is to measure the convergence rate of thEUﬂCtionSfe is the Generalized Griewank’s function which is
searching algorithms. It is probably the most widely used t@imultimodal function with many local minima. Griewank's
function. The result is shown in Fig. 6. The convergence rétection is a widely employed test function for global
of the proposed WMWC-DE is a bit higher than that of SDBptimization. This function has an exponentially increasing
When using the proposed WMWC-DE, the solution quality iumber of local minima as its dimension increases and the
increased when the number of iteration increases. As ther@istions of the minima are regularly distributed. In the
only one minimum within the solution space, nearly all thexperiment, the dimension of the Generalized Griewank’s
population will move towards that minimum. function is 30. In consequence, the testing function contains
Functionf is the Quartic function. Since it is a polynomiapjenty of local minima. The tested result is shown in Fig. 11.
of even degree, it approaches the same limit when #&an be seen from this figure that if the wavelet mutation is
argument goes to positive or negative infinity. Thus tgeq the rate of convergence is much higher than that of the
function has a global minimum. The result is shown in Fig. é5e |t shows that by adding the wavelet mutation and

\ISVEe '(;ar?1 Sc?l’? t?:;ggftﬁgz\;ﬁgeor;cgééte:;tg:eafgoggszegtyr@éls v velet crossover to the DE, we can reduce the chance that the
PE IS much g . j u o searching process is trapped in some local minima. Moreover,
iteration, the proposed method is able to reach the minimum

Functionf; is the Easom function where the global minimur]Ry mtrodufcl\r;ngi/r\\/% VSaEV(.elet cro;;sove}r to DE’ tlhe Ise?rc?]ng
is near a small area relative to the search space. The fundii§iFess © ) IS capable of moving closely fo the

-8000

fitness

-10000 ¥

-12000 -

Fig. 13. The fitness of the Schwefel’'s function.
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global minimum in the early iteration stage, as compared whiknchmark test functions, and offers better results in terms of
the other two algorithms. Thanks to the property of tle®nvergence rate, solution quality and stability than SDE.
wavelet crossover, the effort on searching and evaluating thds@nks to the properties of the wavelet, the performance and

local minima that are far away from the global minimum &pbustness of DE are improved.

reduced.
Functionsf; is the Generalized Ackley’s function which is a
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region and a central hole or peak where the modulations of the
cosine wave become more and more influential. The result is
shown in Fig. 12. The experiment shows that if the wavelet
mutation is used with DE, the fitness of the function droppeg
rapidly. After 200 times of iteration, the fithess value is
already close to the global minimum. But both the SDE and
DE with wavelet mutation cannot reach the global minimum,
. . 2l
By applying both the wavelet mutation and wavelet crossover,
the DE can reach the global minimum point at about 250 times
of iteration. It shows that WMWC-DE provides a bettgg)
solution quality. Furthermore, it can be seen from Fig. 12 that
if the wavelet mutation and wavelet crossover are used, the
convergence rate is much higher than that of the SDE. The
WMWC-DE is capable of moving closely to the globa[l4
minimum at the early iteration stage. This shows the
advantage of incorporating wavelet mutation and wavelet
crossover on reducing the effort on searching and evaluatisp
those local minima that are far away from the global minimum.
Functionsfg is the Schwefel’s function which is deceptive i
that the global minimum is geometrically distant, over t
parameter space, from the next best local minima. Theref(ma,
the search algorithms are potentially prone to convergence in
the wrong direction. The result is shown in Fig. 13. Similar {8]
functions fs and f;, if the wavelet mutation and wavelet
crossover are used, the convergence rate is much higher EC]an
e

8l

that of the SDE. Moreover, the WMWC-DE can move clos
to the global minimum at the early iteration stage.

For multimodal functions with many local minima, the
proposed WMWC-DE can significantly improve the
convergence rate and the chance of reaching the gloB&i
optimum as compared to SDE.

IV. CONCLUSION [11]

In this paper, we proposed a new hybrid differential evolution
with wavelet theory based mutation and crossover operation.
In the mutation operation, we proposed an adaptive schem
tuning the scaling factd¥ of the DE algorithm by applying the
wavelet theory. In the crossover operation of DE, we proposed
an adaptive scheme on modifying the trial population vectors
by applying the wavelet theory. The resulting WMWC-DE
takes advantage of the beneficial properties of the wavelet
function to improve the solution quality and stability. The
proposed method can explore the solution space more
effectively in reaching the global solution. Simulation results
have shown that the proposed wavelet mutation and wavelet
crossover based DE is a useful algorithm to solve a suite of
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