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Abstract—An improved hybrid particle swarm optimization ~ under that approach, the mutating space is kept unchanged all the
(PSO) that incorporates a wavelet-based multi-mutation operation time throughout the search. It can be further improved by
is proposed. It applies wavelet theory to enhance PSO in exploring varying the mutating space along the search.
solution spaces more effectively for better solutions. A suite of Qn doing GA’s mutation operation, the solution space is more
benchmark test functions are employed to evaluate the jikely to be explored in the early stage of the search by setting a
performance of the proposed method. It is shown empirically that larger mutating space, and it is more likely to be fine-tuned to a
the proposed method outperforms significantly the existing S X -
methods in terms of convergence speed, solution quality andbet:etr_solutlon n tl?e Ia(’;er st?r?e of the st_earchf by setltlr:g;smTar:I_er
solution stability. mutating space, based on the properties of wavele [2]. his

technique can also be applied to improve the hybrid PSO with
I. INTRODUCTION GA's mutation. A mutation operation with a dynamic mutating
. oo _ égiace that incorporates a wavelet function [2] is proposed. The

Partlgle swarm optlmlzat_lon (RSQ) IS a rece_ntly PropoS@ihyelet is a tool to model seismic signals by combining dilations
population based stochastic optimization algorithm which Is 4 ansiations of a simple, oscillatory function (mother
inspired by the social behaviours of animals like fish SChOOIiQ\%velet) of a finite duration. The PSO's mutating space is
and bird_flockiqg _[6]'_ Comparing with other population b_ase\%rying dynamically based on the properties of the wavelet
stoch_ast|c optimization methods, such as the eV_OIUt'an‘ﬂ}‘lction. However, in recent research [16] of PSO with wavelet
algorithms, PSO has compar_ab_le or even superior segifitation (WPSO), only one element in each particle may
performance for many hard optimization problems with afasﬁ?ﬁdergo the mutation process in an iteration step. This may
and more stable convergence rate [7]_' However, observati PE-maturely restrict the searching space, although the searching
reveal that PSO converges sharply in the early stage of the .. a5 been varying during the searching process. An
searching process, but it saturates or even terminates in the {gter o4 wavelet mutation is proposed in this paper, which
stage. It behaves like the traditional local searching methods tf!ﬂ%ws more than one element in each particle to be ml’Jtated in
f[rap in local opt|ma._ _It IS hard to_ obtain any _S|gn|f|cargach searching process. The resulting multi-mutation operation
improvement by examining neighbouring solutions in the latgly< he hybrid PSO to perform more efficiently and provide a
stage of the s_earch. Vaes_seﬂsal. [11] and Reeves [14] put faster convergence than the PSO with wavelet mutation, the
the_se searching methods into the context of local search Qrqarq PSO, and other hybrid PSOs [1][9] in solving a suite of
neighbourhood search. . ) 8 benchmark test functions.

Ah”?ed et al_. [1] proposed a _hyb“‘?' F_’SO that integrated _the This paper is organized as follows: Section Il presents the
Genetic Algorlthm_(GA) mutation W't_h'n a constant mu“?‘“”%peration of the hybrid PSO with multi-wavelet mutation.
space. Under this approach, partlcle_z_s can sear_ch differeherimental studies and analysis are given in Section Ill. Eight
directions by themselves, and local positions of particles cang, ., mark test functions are used to evaluate the performance of

perml_Jtated. Th_e SO_IUt'On space can still be explored by [H@ proposed method. A conclusion will be drawn in Section IV.
mutation operation in the later stage of the search, and

pre-mature convergence is more likely to be avoided. However, . HYBRID PSOWITH MULTI-WAVELET MUTATION

PSO is a novel optimization method developed by Ebe#iart
al. [6-7]. It models the sociological behaviour of bird flocking,
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and is one of the important evolutionary computation techniquéslowing equation [7]:

Within a number of particles that constitute a swarm, each

particle traverses the search space looking for the global W =W

optimum. The standard PSO (SPSO) process is shown in Fig. 1. W= Waa == (4)

In this paper, a hybrid PSO with multi-wavelet mutation

(MWPSO) is proposed and shown in Fig. 4. The details of SPRRaret is the current iteration numbéf,is the total number of
WPSO and MWPSO will be discussed as follows. iteration, w,,, and w,;, are the upper and lower limits of the

inertia weight, and are set as 1.2 and 0.1 respectively in this

A. Standard particle swarm optimization (SPSO) paper. , L ,
In (1), the particle velocity is limited by a maximum value

In Fig.1, X(t) denotes a swarm at theh iteration. Each v__ . The parametev,,, determines the resolution, or fitness,

particle x"(t)0 X(t) contains « elementsx?(t)0x°(t) at the o regions between the present position and the target position to
t-th iteration, wherep = 1, 2,... ,y andj =1, 2,... ,x; y be searched. This limit enhances the local exploration of the

denotes the number of particles in the swarm. First, particledg#blem space, and it realistically depicts the incremental
the swarm are initialized and then evaluated by a defined fitn€8gnges of human learning. If the valuevgf, is too high,
function. The objective of SPSO is to minimize the fitness valparticles might fly past good solutions; if it is too small, particles
(cost value) of a particle through iteration steps. The swamay not explore sufficiently beyond local solutions. From many
evolves from iteratiort to t +1 by repeating the procedure agxperiments with PSOy,, was often set at 10%—20% of the

given in Fig. 1. The SPSO operations are discussed as fo”%amic range of the variables on each dimension.
The velocity vy} (t) (corresponding to the flight speed in a search

space) and the coordinan}‘?(t) of thej-th elementof the p-th :
. . . begin
particle at thet-th generation can be calculated using tf t.0 J/ iteration number
following formulas [12]: InitializeX(t)  // X(t): swarm for iteration
Evaluaté(X(t)) // f(t fitness function
wivP(t-1) while (not termination conditionjo
: begin
v?(t) = k[ + 4, Crand() [{ pbesf - xP(t 1)) ) ot
_unfs _ /I Process of SPSO //
+ ¢, Hand() Eﬂgbeslt Xi (t 1)) Update velocity(t) and position of each
particlex(t) based on (1) and (2) respectively
ij (t) = ij (t —:I.)"'Vjp (t) (2) if(;’)(t)>vmax
V(D)= Vv,
where  pbest = [pbesf pbesf ... pbesf] , ond
gbestz[gbes; gbesy ... gbes;;],j=1, 2, ...,k . The best it V(t)<—Vinax
previous position of thp-th particle is recorded and representg V(?; = Vimax
] . . . en
as pbest ; the position of best particle among all the particles I/ End of the process of SPSO //
represented agbest w is an inertia weight factorg, and ¢, Reproduce a neX(t)
are acceleration constantsnd() returns a random number in Evaluatef(X(t))
the range of [0,1]k is a constriction factor derived from the d end
stability analysis of equation (2) to ensure the systq en
convergence but not prematurely [5]. Typicakys a function
of ¢, and ¢, as reflected in the following equation: Fig. 1. Pseudo code for SPSO.
k= 2 B B.R Hybrid Particl imizati di
= . Recent Hybri article swarm optimization and its
‘2‘¢‘\/¢2 —4¢ limitation

whereg =¢, +¢, and¢ >4. From our observation, SPSO [9] works well in the early

iteration stage, but it usually presents problems on reaching a

SPSO utilizespbest andgbestto modify the current searchnear-optimal solution. The behaviour of the SPSO is affected by

point to avoid the particles moving in the same direction, but¥8Me important aspects related to the velocity update. If a

converge gradually towagbestandgbest. A suitable selection Particle’s current position coincides with the global best position,
of the inertia weightv provides a balance between the global arflie particle will only move away from this point if its inertia
local explorations. Generally can be dynamically set with theWeightand velocity are different from zero. If their velocities
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are very close to zero, all the particles will stop moving once th ) = e /2 codBx 8
catch up with the global best particle, which may lead %\( ) S{ ) ®

premature convergence and no further improvement can_be ,
obtained. This phenomenon is knowrstgnation{4]. The Morlet wavelet integrates to zeRr@perty 3. Over 99% of

Ahmed et al. [1] proposed to integrate GAS’ mutationthe total energy of the function is contained in the intgrval of
operation into PSO, which aids to overcostegnation Here, ~2°<X< 25 (Property 3. In order to control the magnitude
we call this hybrid PSO as APSO. The mutation operation sta#f§l position of4(x) , a functiony/,,(x) is defined as follows.
with a randomly chosen particle in the swarm and moves to
different positions inside the search area. The followin 1 x—b

3ab( w(—] 9)

mutation operation is used in APSO: X)=—

7

a

mu(xj): X, ~w )

where x; is the randomly chosen particle element from the

swarm, andwis a number randomly generated within the range
[O, 0.1x (paraTLax - para/,, )J representing 10% of the length of 2%
the search spacepara’ _ and para!,are the upper and lower

bounds of each particle element. The pseudo code of the hybrid
PSO with the mutation operation is shown in Fig. 4, in which the 1 . .
mutation on particles will perform after updating the velocities x
and positions of the particles. It can also be seen from Fig. 1 and
Fig. 4 that the two PSO methods are identical except the
mutation operation has been integrated in the second method. ) o ) ]
However, (5) indicates that the mutating space in APSOWhere a is the 'dllatlon parameter anbl is the translation
limited by win which 10% of the range of the parameterused. parameter. Notice that

It may not be a good approach in fixing the mutating space at all

time of the search. It can be further improved by employing%mo(x) =‘//(X)’ (10)
dynamic mutation operation in which the size of the mutatinég 1 X

space varies during the search. ao(X) = \/gw(gj '

Fig. 2. Morlet wavelet

(11)

C. Wavelet theory It follows that¢, () is an amplitude-scaled version g{x) .

Certain seismic signals can be modelled by combinifidg. 3 shows different dilations of the Morlet wavelet. The
translations and dilations of an oscillatory function with a finitemplitude of ¢,,(x) will be scaled down as the dilation

duration called a “wavelet”. A continuous functign(x) is parameter increases. This property is used to do the mutation

called a “mother wavelet” or “wavelet” if it satisfies theoperation in order to enhance the searching performance.
following properties:

=1 a=5 a=10 a=50
Property 1: 1 1 1 1
+oo 0.5 0.5 0.5 0.5
[Zvoo=o © Ll
—o0 il 0 il 0]
. . 05 05 05 05
In other words, the total positive momentumyafx) is equal to
. o S g -1
the total negative momentum gf(x) . 2 0 2 0010 0 0 20 00 100
=100 2=500 ==1000 ==10000
1 1 1 1
Property 2:
oo 5 05 05 05 05
[ dx<e ™ | VAV I IS I i
0.5 0.5 0.5 05
which means most of the energydr(x) is confined to a finite 4 p 4 p
. . . B =200 0 200 -000 O 1000 2000 0O 2000 -1 0 1
duration and bounded. The Morlet wavelet (as shown in Fig. : i

[2] IS an example mother wavelet: Fig. 3. Morlet wavelet dilated by different values of the paranaeteraxis:x,

y-axis: Wapo(X) )
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D. WPSO and the Proposed MWPSO equal to the total negative energy of the mother wavelet. Then,
the sum of the positiver is equal to the sum of the negatige

We propose a multi-wavelet mutation that varies the mutatingnen the number of samples is large apdis randomly
space based on the wavelet theory. The MWPSO is identicahiperated. That is,
WPSO except the number of elements that undergo the mutafion
process in each particle can been controlled. Both WPSO ap
MWPSO will be discussed in the following sub-section. N o=0forN - o,

N

(16)

1. WPSO and its Operation

. L Wr}ereN is the number of samples.
The mutation operation is used to mutate the elements o

particles. In general, various methods like uniform mutation or
non-uniform mutation [8, 10] can be employed to realize th
mutation operation. The proposed wavelet mutation (WM
operation exhibits a fine-tuning ability. The details of the

begin
t-0 // iteration number
InitializeX(t)  // X(t): Swarm for iteration

operation are as follows. Every particle of the swarm will have
chance to mutate governed by a probability of mutation
y7 D[O 1], which is defined by the user. For each particle,

Evaluatd(X(t)) // f(0i: fitness function
while (not termination conditiondo
begin

t-t+1
Perform the process of PSO (shown in Fig. 1)
Perform mutation operation with p,,
If perform multi-mutation

Select the elements witk,,
Reproduce a neX(t)
Evaluatef(X(t))

eni

random number between 0 and 1 will be generated that contrg
which element in the particle will be mutated, the mutation wil
take place on that element of particle. For instance,

x?()=(0, x°(0)

particle and the element of particxIE(t) is randomly selected

x,f(t)] is the selected p-th

for mutation (the value okjp(t) is inside the element’s bounds

[ pararLin'pararLaX ])1 the

Fig. 4 Pseudo code for hybrid PSO with mutation operation.

resulting particle is given
4
10

by xe()=pe(), ¢, .. %@, . )
wherej 0 1, 2, ... k; k denotes the dimension of particle anc 7o =5
10°k >
) i =2
%°(t)= xP (t)+ox (|Oara,‘nax -x! (t)) if >0 12) @ TN
: )g.p(t)+a><(xjp(t)— paraLin) ifo<0’ 2
g 10°F ]
G
T=Wa0(9) (13)
wm =05
10t i
1 E
o= ﬁw[gj (14) Cum =02
By using the Morlet wavelet in (8) as the mother wavelet, 0 01 0z 03 04 05 06 07 08 08 1
Eqjjz/ Fig. 5 Effect of the shape parametgy  toa with respect ta/T.
- /2
o =ie &/l co {zj (15) . . :
a a ence, the overall positive mutation and the overall negative
Ja H th [ t tat d th [ t

mutation throughout the evolution are nearly the same. This

If o is positive @ >0) approaching 1, the mutated elemerroperty gives better solution stability (smaller standard

. . deviation of the solution values upon many trials). As over 99%
will tend to the maximum value orlp(t) Conversely, whemw g : ;
! of the total energy of the mother wavelet function is contained in

is negative ¢ < 0) approaching-1, the mutated element will the interval £2.5, 2.5],¢ can be generated fromZ.5, 2.5]
tend to the minimum value o}f(t) A larger value ofo] gives randomly. The value of the dilation paramedeis set to vary
with the value oft/T in order to meet the fine-tuning purpose,

I hi for fi , Referri 1 whereT is the total number of iteration ardis the current
smaller searching space for _me-tunlng. eferringraperty number of iteration. In order to perform a local search witisn
of the wavelet, the total positive energy of the mother wavelet is

a larger searching space f(fr(t) When|a| is small, it gives a
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large, the value o should increase agT increases so as to [ll.  BENCHMARK TESTFUNCTIONS ANDRESULTS

reduce the significance of the mutation. Hence, a monotopic Benchmark test function

increasing  function governing: and T is proposed as A suite of eight benchmark test functions [13] are used to test

follows. the performance of the MWPSO. Many different kinds of
optimization problems are covered by these benchmark test
_m(g)x(l_ijzwmﬂn(g) functions. They can be divided into three categories. The first
a=e T a7 type is the unimodal function, which is a symmetric model with a

single minimumf; tof; are unimodal functions. The second type
where ¢, is the shape parameter of the monotonic increasitsgthe multimodal function with a few local minim;andfs
function, g is the upper limit of the parametr The effects of belong to this type. The last one is the multimodal function with

the various values of the shape paramétgy to a with respect many local minimafg to fg belong to this type. The details of
o o ) these functions are shown in Table I.
to 7/T are shown in Fig. 5. In this figure, is set as 10000.

Thus, the value o0& is between 1 and 10000. Referring to (15 able I. Benchmark Test Functions.

the maximum value o& is 1 when the random number @¢=0 | Test function Domain range Optimal point
anda=1 (t/T =0). Then referring to (12), the offspring gene Sphere function -5k x <150 | Min(fy)=
30 f1(0)=0
xP(t)= x! ()+1><(paramx—x ()) = paral,,. It ensures | f(x)=3 %
i=1
that a large search space for the mutated element of particle is
given. When the valu¢/T is near to 1, the value @f is so | Step function -5<x <10 Min(f2)=
. . % 2 £2(0)=0
large that the maximum value of will become very small. For f2(><)=ZQ>§ +08)
example, att/T =0.9 and{,,, =1, the dilation parametea = i
400; if the random value ap is zero, the value off will be [schwefel's Problem 2.21 T150<x, <50 | Min(fa)=
equal to 0.0158. A smaller searching space for the mutated ¢ - ma>ﬂx\,1<| <30} f3(0)=-1
element of particles is then given for fine-tuning.
After the operation of wavelet mutation, a new swarm [[Xowaiik's function Tsex <5 Min(fa)=
generated. This new swarm will repeat the same process. $uch f4([0.1928
an iterative process will be terminated when a defined numbef of (x) = Z{ éﬂ t?;* B%, } 0.1908]) 0.1231
; ; ; - + X+ X, 0.1358])=
iteration is met. 1 30755 10"
2. The proposed MWPSO Hartman’s Family | 0<x <1 Min(fs)=
B 3 f5([0.114 0.556
0= ce@-3 ax-p )ZJ 0.853)=
For the proposed MWPSO, one more paramateil[0 1] = = -3.8628
is defined. The value &, is randomly set at each iteration step.
This parameter control the number of elements in the partic @iewaﬂk Function ~120Gx <60C | Min(fe)=
that mutate, such that more than one element in each particle cap, - = CO{& J+l f6(0)=0
vary its value and more freedom will be given to the particle|to 4000\ El ﬂ i
explore the searching space. For instance, Lif i i i
Generalized Ackley’s function -64<x <32 Min(f7)=
P =P P P i . % f,(0)=0
xP(1) [xl (6, *°(t) X (t)] is the selected p-th fﬂ(x):_mex{_ 0 {73*102.%2] 7
particle, the number of elements that undergoes mutatior is -
controlled by: -ex 30211005277&)
+2C+e
Numberofmutateglements= N, x (18)
Schwefel’s function -500< x <500 | Min(fg)=
. . | 30 fg([420.9687, ...,
The elements for doing mutation are randomly selected. T h@(x)=_2(>g sin(\/M)) 420.9687])=
resulting particle is denoted by = -12569.5

x?(t)=[x"(t+ 9 xP(t+1), whergf 01, 2, ...«

xP(t+1),
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The performance of SPSO [9], APSO [1], WPSO and the
proposed MWPSO on solving the benchmark test functions is

evaluated. The following simulation conditions are used:
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convergence are quite similar, and they all can reach or get near
to the global optimum. However, MWPSO still provides the
best standard deviation value.

*  The shape parameter of wavelet mutatigp,(): 0.2
* The acceleration constawi : 2.05

*  The acceleration constat, : 2.05

*  Maximum velocityv,,,: 0.2

e Swarm size: 40
¢ Number of runs: 50
*  Probability of mutation f): 0.1

*  Mutation parameterl{,.): 0.3
< Initial population: generated uniformly at random

3. Multimodal function with many local minima

Functionsfs to fg are multimodal functions with many local
minima. For functiori, it can be seen clearly from Fig. 6(f) that
MWPSO is the fastest to reach the optimal point. From the result
obtained, MWPSO, WPSO and APSO return the same best cost
value, but the standard deviation of MWPSO is the best. Hence,
MWPSO can provide more stable and high-quality result.

For functionf;, as seen from Fig 6(g), the proposed method
has already reached the optimal point after a few iteration steps,

In this section, the simulation result for the 8 benchmark t§ghile other methods almost use 200 iteration steps to reach the
functions are given to show the merits of the MWPSO. Th@timal point. It shows that the MWPSO offers a good searching
experimental result in terms of the mean cost value, best ¢gsflity thanks to the multi-wavelet mutation in the PSO. Also,
value, standard deviation and convergence rate are summarjge@dmean and the standard deviation offered by MWPSO are
in Table Il and Fig. 6. much better than those of others.

) _ For functionfs, it is shown that the searching ability of the
1. Unimodal function proposed method is quite different from the other methods. All

Functionf, is a sphere model. In view of the characteristic §#€ &lgorithms except MWPSO have similar behaviour at the
f,, which is smooth and symmetric, the main purpose is figst 400 iteration steps, and are trapped in some local minima.
measure the convergence rate of the searching. It is probablyRfethe other hand, the cost value offered by MWPSO is
most widely used test function. For this function, the result #¢creasing gradually, and it can provide the best result as
terms of the mean cost value, the best cost value, and §AEPared with others.
standard deviation of MWPSO and WPSO are much better than
those of the other methods. As shown in Fig. 6(a), the IV. CONCLUSION
convergence rate of MWPSO is higher than that of WPSO,n this paper, we proposed a new hybrid PSO with
APSO and SPSO. multi-wavelet mutation. Our objective is to increase the

Functionf; is a step function, which is a representative of flgearching area by increasing the number of elements in a particle
surfaces. Flat surfaces are obstacles for optimization algoriththist undergo mutation so as to further improve the performance
because they do not give any information about the seauftWPSO. The solution space can be explored more effectively
direction, unless the algorithm has a variable step size. Fronmreaching the optimal solution. Simulation results have shown
Fig. 6(b), it is clearly shown that MWPSO has the begiiat the proposed method is a useful technique to solve
convergence rate as compared with SPSO, WPSO and AP&glimization problems. On solving a suite of benchmark
We see that by increasing the number of elements for mutatifumctions, MWPSO offers better results in terms of solution
we can enhance the searching space. quality and stability than WPSO, APSO and SPSO. Also a faster

Functionf; is a Schwefel's problem 2.21. According to Figconvergence speed can be achieved by MWPSO.

6(c), the performance does not show significant difference at the
first 400 iteration steps. From Table II, although the best cost
value of the MWPSO is a little bit larger than that of the APSO,
the mean cost value and the standard derivation of the MWPbS
are the best. Thus, MWPSO can offer better solution quality gnd

C. Results and Analysis
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SELECTED FUNCTIONS ALL RESULTS ARE AVERAGED ONES OVERORUNS

f1 (x10"), number of iteration: 500

MWPSO WPSO APSO SPSO
Mean 0 0 0.0004 32857.946f
Best 0 0 0.0001 12500.498p
Std Dev 0 0 0.0003 8626.6124
f, (x10"), number of iteration: 500
MWPSO WPSO APSO SPSO
Mean 0 0.62 0.9 39.58
Best 0 0 0 0
Std Dev 0 1.4553 3.37 34.5154
f3 (x10°), number of iteration: 1000
MWPSO WPSO APSO SPSO
Mean 0.7374 1.3189 8.4366 14.61
Best 0.2894 0.1854 0.0743 1.8902
Std Dev 0.255 7.0255 18.421 19.2
f4 (x10°), number of iteration: 1000
MWPSO WPSO APSO SPSO
Mean 1.4 4.2 6.3 8.5
Best 0.3 0.4 0.5 0.3
Std Dev 3.9 7.7 8.9 9.3
f5 (x1&P), number of iteration: 500
MWPSO WPSO APSO SPSO
Mean -3.8628 -3.8628 -3.8628 -3.8625
Best -3.8628 -3.8628 -3.8628 -3.8628
Std Dev 2.7683e-15] 3.5092e-11| 2.7849%e-14 0.0016
fs (x1&), number of iteration: 500
MWPSO WPSO APSO SPSO
Mean 0 0.1925 0 138.1759
Best 0 0 0 0.0709
Std Dev 0 0.2864 0 128.0549
f7 (x10"), number of iteration :500
MWPSO WPSO APSO SPSO
Mean 0.0044 509.6625 0.0179 3278.013p
Best 0 0 0 3.8481
Std Dev 0.0069 1744.8548 0.112 3581.228b
fg (x10%), number of iteration :1000
MWPSO WPSO APSO SPSO
Mean -11210.965¢ -7441.1954| -7180.360pP-6951.7609
Best -12352.3469 -8161.4782] -8159.961p-8278.3995
Std Dev 578.664 438.2333 | 450.2045 656.8472
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