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Abstract—This paper discusses some recent advances in the
development of nonlinear adaptive filtering. Specifically, it studies
online kernel adaptive filters. We study the performance and
complexity of a suite of kernel online algorithms from kernel
recursive least square subspace (KRLSS) algorithms to kernel
least mean square (KLMS) algorithms. A key to the kernel algo-
rithms is that updating is done in the dual space via evaluation of
kernels, the number of support vectors is controlled by using an
information criterion, and the number of information vectors is
controlled for KRLSS These algorithms have advantages in that
they are nonlinear filters that are relatively easy to implement
and have a number of parameters that can be adjusted to tradeoff
performance for complexity.

I. INTRODUCTION

In recent years there have been substantial advances in
the area of nonlinear adaptive filtering. This paper looks at
the development of online kernel algorithms using quadratic
cost functions. Specifically, we examine a variety of kernel
learning algorithms from the kernel recursive least squares
subspace (KRLSS) algorithm to the kernel least mean square
(KLMS) algorithm. The online algorithms are updated in
the dual observation space by evaluating kernel functions.
Performance and computational complexity can be traded
off by adjusting different parameters of the algorithms. This
includes criteria for choosing support vectors and information
vectors. The algorithms are nonlinear adaptive filters that are
easily implemented and different adaptive kernel algorithms
are simulated on a nonlinear time series example.

Kernel methods have become a popular and widely used
machine learning paradigm as they are based on sound theo-
retical principles of statistical learning theory, structural risk
minimization, and reproducing kernel Hilbert spaces (RKHS)).
Kernel methods solve nonlinear problems by transforming
inputs and solving convex optimization methods. The solution
can also be found in the dual space via the kernel trick
[3], [15], [24]. Kernel methods have been used in a wide
range of applications from communication to text recognition
to biomedical applications [3], [18], [19], [23]. Commonly
used kernel methods are the Support Vector Machine (SVM)
with different formulations for classification and regression
problems. For binary classification problem the common cost
function for SVM is the hinge loss function and for regres-
sion functions the common cost function for SVM is the €
insensitive loss function [3], [15], [24]. Both problems involve
solving quadratic optimization problems with linear inequality
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constraints. Most solutions involve solving problems in a batch
mode where a set of training examples is given to the algorithm
and then the algorithm finds the appropriate parameters; in
primal space, the weight vector, w and threshold value, b or
in dual space, the support values «, the associated support
vectors x(i), 1 <4 < m, and threshold value b.

In many signal processing applications such as time se-
ries prediction it is often necessary to implement algorithms
that are online and adaptive. There has been some previous
research implementing SVM in an online manner, [1], [8],
[20] with these papers focusing on classification problems. In
this paper we focus on SVM regression that uses a quadratic
cost function which is referred to as the least squares SVM
(LSSVM) [23]. The LSSVM solution is found by solving a set
of linear equations in either the primal or dual space [23]. A
problem with implementing the LSSVM solution in the dual
space is that the dimensionality of the system is m, the number
of training examples. For moderate to large training data sets
the number of support vectors need to be reduced. The solution
can be made sparse in the number of support vectors by using
various methods including constrained subspace approaches
[9], [2]. For these methods the weight vector is constrained to
lie in the subspace generated by the support vectors with the
solution again involving solving a set of linear equations.

These kernel algorithms can then be easily implemented
in an online manner by using matrix identities and methods
used for recursive least squares (RLS) filters [7]. This has
been done in [5], [6], [9]. In [6] a criteria is chosen based on
only inputs called the approximate linear dependence (ALD)
which adds support vectors when the kernel vector is almost
linearly independent of other support kernel vectors. Other
criteria can also be used base on inputs and outputs such as
training error criteria discussed in [5], [9]. There is similar
research developed by [17] and for online Gaussian processes
by [4]. More recently, two kernel stochastic approximation
algorithms have been developed based on the LMS algorithm
[14], [16]. These algorithms have the advantage of having
lower computational complexity per update and being simpler
to implement.

This paper discusses algorithm design, performance, and
complexity issues associated with these online kernel algo-
rithms and is organized as follows. In Section 2 we discuss
the kernel least squares subspace KLSS optimization algorithm
and solution. We then give an online formulation of the
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KLSS algorithm called the kernel recursive least squares
subspace KRLSS algorithm in Section 3. The algorithm is
considered for time series prediction with updating of an
estimate consisting of two steps; first adding and deleting
information vectors, then testing to see if the support vectors
are modified. Section 4 then discusses different criteria for
adding and possibly deleting support vectors. In Section 5
we discuss approximations to kernel least squares algorithms.
We focus on two algorithms; the primal kernel least mean
square PKLMS algorithm, [14] and the dual kernel least mean
square (DKLMS) algorithm, [16]. Section 6 gives a simulation
example illustrating the tradeoffs between performance and
complexity for both the KRLSS and DKLMS algorithms.
Finally, Section 7 summarizes results of the paper and suggests
further directions for this research.

II. KERNEL LEAST SQUARES REGRESSION

In this section we present the LSSVM developed in [23]
and the subspace method presented in [9]. Here we are given
training examples (z(4),y(4)), 1 < i < m where z(i) € R"
and y(i) € R. We represent the data compactly as (x,y)
where x = [z(1)|...]|z(m)] and y = [y(1),...,y(m)]T. The
inputs are transformed from input space to feature space via
kernel functions ¢(z) that map inputs from R"™ to feature
space Re. Let Z = ®(x) = [¢(x(1))]...|¢(x(m))]. Then
the system can be formulated by a least squares optimization
problem given by

. " 2 7 2
minJ (w, b) = min o ||wl|” + o el (1

subject to
e=y—ZTw—1b 2)

where w € R? is the weight vector, 1 is a vector of Is,
and b € R is the threshold value. Equation (1) contains
two terms with the first term controlling complexity and the
second term controlling squared error with v > 0 denoting the
regularization value that weights the squared error.

It is easily shown that the solution to this optimization
problem in primal or dual space involves solving a set of
linear equations. We cannot always work in the primal space
as the dimensionality can be infinite if we work with certain
kernels such as Gaussian kernels. However, a problem with
working in the dual space is that the solution depends on
the number of training examples, m which could be quite
large. Unlike the standard SVM solution, the LSSVM solution
uses all training examples as support vectors. Some method is
needed to sparsify the training data set.

Let us pick mg columns of Z to form a matrix Zg with .S
denoting the set of m, support vectors. The training inputs
associated with these columns are the support vectors and
methods for choosing these support vectors are discussed in
[6], [9], [14], [16]. There are now two algorithms that we
use to solve the LSSVM problem. One method is called the
reduced system method and the second method is called the
subspace method. We present solutions to both methods, but
the paper focuses on the subspace method.

A. Reduced System Method
The reduced system method solves the LSSVM for Zg. The

solution is given by
b 0
I I

where Kgg = Zs'Zs. Assume that A = Kgg + I/v is
invertible, then

0 17
1 Kss+1/y

b=1TA"1y/m, 4)
and

a=A"1(y —1b). (5)

B. Subspace Method

For this method the weights are constrained to lie in the
subspace generated by the chosen columns of Z and this
constraint can be expressed as

w, = Zsa. (6)

where « is a m, vector weighting the training feature vectors.
Again let Kgg = ZSTZS and introduce Kg = ZSTZ. By
substituting equations (2,6) in equation (1) we have that

1
min Q(«, b) = min iaTKssa + %Hy —K¢Ta-— 10])%. (7)

This problem is solved by finding the solution to the following
set of linear equations,

b —_—

0l =

Assume A = Kgg/v + KSKST is invertible. By elimination
we then get that

m lTKST
Ksl Kgs/v+ KsKg"

lTy

Koy } L®

b— 1Ty — ].TKSTA_lKSy )
B m — ].TKSTAfle]_

and

a=A""Ks(y — 1b). (10)

We principally use the subspace method as it has advantages
over the reduced system method. Both methods have the same
dimensionality ms + 1, however the subspace method uses
more information and data, Kg as opposed to just Kgg. This
results in improved performance for the subspace method at
the cost of slightly higher computations.

To get the estimated output for either method given an input
z, let z = ®(x).

The estimated output is then given by

9(z) = w2z 4+b (11)
or we can represent in dual space using kernel by
§(2) =o' Kg, + (12)

where Kg, = ZSTz.
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III. ONLINE KERNEL RLS ALGORITHMS

We consider prediction of time series data. Data is given
by a sequence of data, x(k) € R. Here the feature input
z(k) = [¢(x(k)) ... p(x(k—n+1))] and the associated output
is y(k) = x(k 4+ L) where L > 1 is the prediction step.
For kernel algorithms we consider online recursive algorithms
where at time %k the support vector parameters are given by
a(k). Without loss of generality we assume that the threshold
value b = 0. The estimate of y(k) is

§(k) = (k)" Kgai)

The kernel online algorithm is then given the output y(k) and
updates the data matrices to compute the inverse of A and then
update the support vector values. In addition to the length of
the input vector, n we must determine the number of support
vectors ms and the number of information vectors m that are
used in the kernel subspace algorithm. In Section 4 we discuss
criteria for adding and deleting support vectors. The algorithm
is then given by

13)

1) Initialization of parameters and .

2) Add and possibly delete information vectors. Update
Kg. Then compute A~! and update o.

3) Use criterion to establish whether information vector
should be a support vector. If criteria is satisfied add
information vector to set of support vectors and augment
«. Update Kg and Kgg. Then compute A~! and update
«. If necessary, also delete support vector and associated
quantities.

4) Form estimate and go to 2.

In step 2. information vectors are added and possibly
deleted. This involves changing the columns of Kg. Com-
puting A~! can be done by using the Sherman Morrison
Woodbury formula given by

(F+uw?) ' =F ' - Flu(1 + 0T F~lu) TP~ (14)

where I is the old value of A and v and v contain information
vectors to be added and possibly deleted. This results in
O(mg)? computations.

In step 3. if the number of support vectors is increased
by one, computing A~! involves increasing the dimension of
kernel vectors by one and using the following formula for
inverting block matrices given by

£ 6] [ 3]s

E H 0 0 (15)

where [ is the old value of A, and G, FE, H contain new
information. v = (F:;G), uw = [EF71,-1] and § =
H — EF~'G. This results in O(mmg) computations. The
computation involved in adding a support vector is more than
adding and deleting information vectors. The computational
savings involved in computing A~! using equation (14,15)
instead of direct inversion becomes larger as mg grows.
Note that in [6], [16] they prove that for using the ALD or
the coherence criteria that an updating algorithm for stationary
data consisting of just adding support vectors eventually results
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in a finite number of support vectors being added even if
the number of training data grows arbitrarily large. This
eliminates the need for deleting support vectors if the data
in the time series is stationary. In practice training data may
be nonstationary and improved performance can be achieved
by not only adding support vectors, but occasionally deleting
support vectors. Note that making more changes to the support
vector set results in increased computations. In Section 6 we
show through simulations the tradeoffs between performance
and computational complexity as we vary the number of
support vectors.

IV. CRITERIA FOR ADDING SUPPORT VECTORS

In the previous section we discussed KRLSS algorithms.
A key to these algorithms is when to add support vectors.
There are several approaches that can be taken. We categorize
these approaches into three groups; data independent, input
dependent, and input/output dependent.

Examples of data independent are choosing support vectors
at random or choosing the most recent information vectors as
support vectors by a windowing scheme. The advantages of
data independent methods is the cost of the data independent
methods is low. Data independent methods in general are not
used as the performance is inferior to other methods and
computational costs could also be high (e.g. support vector
set will change at each update for most recent time window
method which will result in higher computational costs.)

Input dependent methods have achieved popularity due to
their good performance. Examples of input dependent methods
are the ALD test in [6] and the coherence test used in [16].
The ALD test involves first finding

3(k) = min || Ksy() — Kssall? (16)
This results in §(k) = z(k)Tz(k) — ng(k)(KSS)_lem(k)-
If 6(k) < po, then the current training input is added as
a support vector. With knowledge of (Kgg)~! the ALD
test takes O(ms)? operations. The coherence test normalizes
kernels so that K (x,x) = 1, then tests the magnitudes of the
components of K g (). if all of the components are less than
a threshold value i, then current training input is added as a
support vector. The coherence test takes O(m) operations.
Input/output dependent methods have also been developed.
These criteria depend on both input training example data
and their outputs. These methods achieve good performance
and can achieve better performance than just input dependent
methods, but require slightly higher computations. Let I be
the set of m information vectors, then a training error based
criteria examines the angle between ¢ = y — a” Kg with the
new kernel vector K7y, ). If this angle is small, then current
training input is added as a support vector [9]. This method
takes O(mm) operations. Other methods such as the surprise
criterion combine ALD with training error and are based on
approximating processes by Gaussian processes and looking
at training examples that have high information content, [12].
Key concerns for all these methods is the performance
versus computation requirement tradeoff. It is not possible to
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choose the optimal set of support vectors [22], but if we can
choose a reasonable set of support vectors we can still get good
performance. By changing threshold parameter values we can
also tradeoff performance for higher computations and more
support vectors.

Besides controlling the number of support vectors we also
have to control the number of information vectors given by the
set I. For time series problems we typically do this by using
the m most recent training examples as belonging to I. Note
in this case that S is not a subset of I.

V. KERNEL LMS ALGORITHM

Recently, two kernel LMS algorithms have been introduced
and are discussed here. The first is formulated in the primal
space and is referred to as the PKLMS algorithm [14] and the
second is formulated in the dual space and is referred to as
the DKLMS algorithm [16]. Both algorithms perform updates
using kernel operations and depend on mg, the number of
support vectors chosen.

A. Primal Kernel LMS Algorithm

The PKLMS algorithm performs LMS in the feature space
and is given by

w(k + 1) = w(k) + ne(k)z(k) (17)

where 7 is the step size, e(k) is the error, z(k) = ¢(z(k)),
and w(0) = 0 (zero initial conditions). The problem with
calculating the PKLMS in the primal weight space is that w(k)
could be very high dimensional and difficult to calculate or not
possible to calculate (e.g. Gaussian kernel). However, in [14]
show that the PKLMS algorithm can be easily computed in
the dual observation space. Instead of updating weights, we
can update the error term with

k
e(k+1) =y(k+1) = > ne()K(z(i),z(k+1)) (18)
i=1
and the estimate is given by
k—1
g(k) = > me(i) K (x(i), x(k)) (19)

Some additional remarks about the algorithm:

Remark 1: Note that (k) = ne(k). PKLMS updates each
support vector value only once (when that training example is
present). This algorithm performs LMS in the primal space
with updates depending only on the current feature input
¢(x(k)) and is a subsystem algorithm.

Remark 2: The algorithm can be run similarly to the KRLSS
algorithms in that the weight vector is updated only when
training examples satisfy a criteria specified in the previous
section and hence become support vectors. The number of
support vectors, ms is then a small fraction of the training
examples.

Remark 3: Each weight update require O(ms) computations.
Testing for whether an update takes place should also be

O(ms) computations. Criteria that could be used are the
coherence criteria or simplified ALD or surprise criteria.
Remark 4: The PKLMS algorithm is shown to converge to
the RKHS least square solution for proper step sizes and does
not need regularization [14].

B. Dual Kernel LMS Algorithm

Consider the kernel least squares problem without regular-
ization and zero bias. The problem involves finding the «
to minimize ||Ksy — KsKZa|?. This looks similar to the
least squares problem in primal space where the object is
to find w to minimize ||Rw — P||> where R = xx” is the
correlation matrix and P = xy is the cross-correlation vector.
The LMS algorithm is a stochastic gradient approximation
algorithm derived from this equation. Similarly we can derive
the DKLMS algorithm in the dual kernel space discussed in
[16]:

1) Initialization of algorithm

2) Get current kernel vector h(x(k)) = Kgyx) and test

coherence

3) If h(xz(k)) has small coherence current input z(k) be-

comes a support vector. We then have S = S + {z(k)}
and a(k + 1) = [a(k)T,0]T.

4) Update weights,

a(k +1) = a(k) + ne(k)h(z(k)) (20)

5) Increment k£ and go to 2.

Here again 7 is the step size and e(k) is the error term given
by
e(k) = y(k) — a(k) h(z(k))

Some remarks about the algorithm:

Remark 5: Algorithm performs kernel LMS in dual space.
Here inputs are given by kernel vector where kernels are
evaluated between set of support vectors and current input.
Here each component of «(k) is modified with each update.
Remark 6: DKLMS has « vector updated with each training
example. It differs from LMS in that dimension of « increases
by one when coherence criteria is satisfied. From Section 3
note that the dimensionality of a which is the number of
support vectors remains finite.

Remark 7: See Remark 3:.

Remark 8: DKLMS has similar behavior as LMS in that
it converges to least squares solution for small enough step
sizes. Additional variations to the algorithm can be made by
having update depending on k& most recent kernel vectors. This
algorithm is call the kernel affine projection algorithm and has
been discussed in [13], [21], [16].

ey

VI. SIMULATIONS

To illustrate the behavior of the algorithm we simulate
the following nonlinear time series estimation problem with
additive noise. This example was also presented in [16].

y(k) = (8 — Sexp(—y(k —1)*))y(k — 1)
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—(.3+exp(—y(k — D)Hy(k —2) + Isin(ry(k — 1)) + v(k)
(22)
with v(k) being additive white Gaussian noise with standard
deviation .1 and with initial conditions y(0) = y(—1) = .1.
Here we simulated the KRLSS algorithm and DKLMS algo-
rithm with Gaussian kernels. Simulations were run for 10000
iterations and repeated 200 times. The coherence criteria was
used and the DKLMS algorithm was run using regularization
value of ¢ = .03, stepsize of n = .09. A normalized form of
the LMS algorithm was run to control weight magnitudes..

In Fig. 1 we show a comparison between the KRLSS
and DKLMS algorithms. The MSE curves look similar to
standard RLS and LMS curves. The KRLSS converges in
much fewer iterations and converges to a slightly lower MSE
value than DKLMS algorithm. However KRLSS takes about
three times the computations as DKLMS per iteration. In Fig.
2 we compare the DKLMS algorithm for different coherence
threshold values. For g = .3 we get an average of 16 support
vectors, for g = .5 we get an average of 25 support vectors,
and for 9 = .7 we get an average of 45 support vectors. The
computation time increases roughly linearly as we increase
the number of support vectors. The MSE improves as we
increase the number of support vectors, but the difference in
MSE between 25 and 45 support vectors is small. In Fig. 3
we vary the number of information vectors for the KRLSS
algorithm. We see that the MSE decreases rapidly when the
number of information vectors is increased from 50 to 200
and then the rate of decrease becomes slower as we make
further increases to the number of information vectors. The
computation time increases roughly linearly as we increase
the number of information vectors.

VII. SUMMARY AND FURTHER DIRECTIONS

This paper discusses a variety of nonlinear online kernel
algorithms. One set of algorithms is based on the RLS
algorithm and a second set of algorithms is based on the
LMS algorithm. Both algorithms run in the dual observation
space and involve computation of kernels. To control the
number of support vectors an information criterion is used.
The number of information vectors is controlled by windowing
data. These algorithms achieve good performance, are simple
to implement, and performance can be traded off with higher
computational complexity by adjusting different parameters
of the algorithm. We envision that these suite of algorithms
will have wide applicability in many arenas from time series
prediction to nonlinear parametric estimation to system iden-
tification problems.

There are many further directions for this research from
analysis of the algorithms to further development of algo-
rithms. We have previously looked at extensions of these
online kernel algorithms to complex filtering applications [10]
and distributed learning [11].
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