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Abstract—This paper presents an exact formulation of Stochas-
tic or Unconditional Maximum Likelihood (UML) estimation for
directions-of-arrival (DOA) finding. In the previous formulation
of UML estimation, an important condition is missing. That is
the non-negative definiteness of the covariance matrix of signal
components without additive noises. Because of the lack of the
important condition, inadequate global solution appears in the
solution space and global search fails to find adequate solution.
We have derived an exact formulation including this important
condition. Then the inadequate global solution disappears and
global search finds adequate solution.

I. INTRODUCTION

The localization of multiple signal sources by a passive
sensor array is of great importance in a wide variety of
fields, such as radar, geophysics, radio-astronomy, biomedical
engineering, communications, underwater acoustics, and so on.
The basic problem in this context is to estimate directions-of-
arrival (DOA) of narrow-band signal sources located in the
far field of the array. A number of super-resolution techniques
have been introduces, such as Conditional or Deterministic
Maximum Likelihood (CML) method [1], [2], [3], [6], [9],
Unconditional or Stochastic ML (UML) method [6], [8], [7],
[9], MUSIC [11], [12], ESPRIT [10], Weighted Subspace
Fitting (WSF) [13] and the Bayesian method [14].

The CML, UML, WSF and Bayesian techniques have
properties superior to other methods since they can handle
coherent signals without any preprocessing, such as the spa-
tial smoothing [12]. They can also handle small number of
snapshots, although the Bayesian method [14] is formulated
only for a single snapshot. It is known that the UML estimator
shows better solutions for coherent signals than the others.

In the previous formulation of UML estimation, an impor-
tant condition is missing. That is the non-negative definiteness
of the covariance matrix of signal components without addi-
tive noises. Because of the lack of the important condition,
inadequate global solution appears in the solution space and
global search fails to find adequate solution. We have derived
an exact formulation including this important condition. Then
the inadequate global solution disappears and global search
finds adequate solution.

II. PROBLEM FORMULATION

Consider an array composed of p sensors with arbitrary
locations and arbitrary directional characteristics, and assume
that q narrow-band source, centered around a known fre-
quency, say !0, impinge on the array from distinct directions
�1, �2, ..., �q , respectively.

Using complex envelope representation, the p-dimensional
vector received by the array can be expressed as

x.t/ D

qX
kD1

a.�k/sk.t/ C n.t/; (1)

where sk.t/ is the k-th signal received at a certain reference
point. n.t/ is a p-dimensional noise vector. a.�/ is the
”steering vector” of the array towards direction � , which is
represented as

a.�/ D Œa1.�/e�j!0�1.�/; :::; ap.�/e�j!0�p.�/�T (2)

where ai.�/ is the amplitude response of the i-th sensor to
a wave-front impinging from the direction � . �i.�/ is the
propagation delay between the i -th sensor and the reference
point. The superscript T denotes the transpose of a matrix.

In the matrix notation, (1) can be rewritten as

x.t/ D A.‚/s.t/ C n.t/; (3)

A.‚/ D Œ a.�1/ a.�2/ � � � a.�q/ �; (4)

s.t/ D Œ s1.t/ s2.t/ � � � sq.t/ �T ; (5)

‚ D f �1 �2 � � � �q g: (6)

Suppose that the received vectors x.t/ is sampled at N time
instants t1, t2, ..., tN and define the matrix of the sampled data
as

X D Œ x.t1/ x.t2/ � � � x.tN / �: (7)

The problem of DOA finding is to be stated as follows. Given
the sampled data X , obtain a set of estimated directions

O‚ D f O�1
O�2 � � � O�q g: (8)

of �1, �2, ..., �q .
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III. ML ESTIMATION

In this section, an exact formulation of UML estimation of
DOA is derived.

To solve the problem of ML estimation of DOA, we make
the following assumptions.

A1) The array configuration is known and any p steering
vectors for different p directions are linearly inde-
pendent.

A2) n.ti/ are statistically independent samples from a
complex Gaussian random vector with zero mean
and the covariance matrix �2Ip , where Ip is a p�p

identity matrix.
A3) s.ti/ are statistically independent samples from a

complex Gaussian random vector with zero mean and
a certain covariance matrix S with rankfS g D r ,
where r � q. In the case of r < q, the signals are
coherent or fully correlated which happens, e.g., in
specular multi-path propagation. s.ti/ are indepen-
dent of n.tj / for any i and j and satisfy

rankfŒ s.t1/ s.t2/ � � � s.tN / �g D r: (9)

A4) q is known.
A5) p, q and r satisfy the condition that a unique solution

of DOA exists in the noise-free case. When the
direction � is expressed by a single real parameter,
the sufficient condition of the uniqueness is given by
q < 2rp=.2r C 1/ and the necessary condition is
given by q � 2rp=.2r C 1/ [15].

A. Stochastic Model

According to the assumptions A1) to A5), x.t/ is a p-
dimensional complex Gaussian random vector with zero mean
and the covariance matrix R,

R D Efx.t/xH .t/g D A.‚/SAH .‚/ C �2Ip (10)

where the superscript H denotes the Hermitian transpose of a
matrix. The probability density function of X is given as

f .X/ D

�
1

�p detfRg

�N

exp

(
�

NX
nD1

xH .tn/R�1x.tn/

)
(11)

The covariance matrix R is parametrized by ‚, S and �2.
‚ indicates a set of directions. S is a non-negative Hermitian
matrix with rankfS g D r . �2 is non-negative real number.

The log-likelihood function of unknown parameters ‚, S

and �2 for given X is defined as

L.‚; S ; �2/ D �N ln detfRg �

NX
nD1

xH .tn/R�1x.tn/

D �N
�

ln detfRg C trfR�1 QRg

�
(12)

where a constant term is ignored and QR is the sample
covariance matrix defined by

QR D
1

N
XXH : (13)

Using a square root matrix of a non-negative definite
matrix1, the p�q matrix V S .‚/ composed of the orthonormal
system of the signal subspace spanned by A.‚/ is represented
as

V S .‚/ D A.‚/
�
AH .‚/A.‚/

��H =2

(14)

and define the unitary matrix

G .‚/ D ŒV S .‚/ V N .‚/� (15)

where V N .‚/ is a p � .p � q/ matrix composed of the
orthonormal system of the noise subspace which is an orthog-
onal complement of the signal subspace. Then, the covariance
matrix R can be represented as

R D V S .‚/PV H
S .‚/ C �2Ip

D G .‚/

�
RSS 0

0 �2Ip�q

�
G H .‚/ (16)

where P D

�
AH .‚/A.‚/

�H =2

S
�
AH .‚/A.‚/

�1=2

and

RSS D P C �2Iq .
Let �1, �2, ..., �q be eigenvalues of RSS . Since rankfS g D

rankfP g D r , it holds that �k > �2 for k D 1, 2, ..., r

and �rC1 D �rC2 D ... �q D �2. Let vk be eigenvectors
corresponding to �k for k D 1, 2, ..., q. Define p-dimensional
vectors

uk D ŒvT
k 0 0 ::: 0�T (17)

The model of the covariance matrix R with rankfS g D

rankfP g D r is given as follows.

R D G .‚/

 
rX

kD1

.�k � �2/ukuH
k C �2Ip

!
G H .‚/: (18)

The set of unknown parameters is f ‚, �1, �2, ... �r , v1,
v2, ... vr , �2 g, where ‚ is a set of directions and �2 is a
non-negative real value as mentioned above. Furthermore the
following conditions are imposed on the parameters: �k is a
real value and satisfies �k > �2 for k D 1, 2, ..., r and v1,
v2, ... vr satisfy

vH
i vj D

�
1 .i D j /

0 .i ¤ j /
: (19)

1For a non-negative definite matrix B , the square root matrix B1=2 is
defined as a matrix C which satisfies B D C C H . The following notations
are used, .B1=2/H D BH =2, .B1=2/�1 D B�1=2, ..B1=2/H /�1 D

..B1=2/�1/H D B�H =2, and we have .B�1/1=2 D B�H =2.
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B. Likelihood Function

Using the model of R in (18), the inverse of the matrix R

is represented as

R�1
D G .‚/

 
rX

kD1

.
1

�k

�
1

�2
/ukuH

k C
1

�2
Ip

!
G H .‚/:

(20)

The log-likelihood function in (12) for a fixed r is rewritten
as

Lr .‚; �1; :::; �r ; v1; :::; vr ; �2/

D �N

 
ln
n
�1�2:::�r

�
�2
�p�ro

C

rX
kD1

lk

�k

C
1

�2

(
trf QRg �

rX
kD1

lk

)!
(21)

where

lk D uH
k G H .‚/ QRG .‚/uk

D vH
k

QRSS .‚/vk for k D 1, 2, ..., r (22)
QRSS .‚/ D V H

S .‚/ QRV S .‚/: (23)

C. Maximization with Respect to �1, �2, ... �r and �2

Given ‚ and an orthonormal system f v1, v2, ..., vr g of
an r -dimensional subspace in q-dimensional complex Euclid
space C

q , we consider the maximization of Lr in (21) with
respect to �1, �2, ..., �r and �2 under the conditions �k � �2

for k D 1, 2, ..., r instead of �k > �2.
We assume with no loss of generality that vk for k D 1,

2, ..., r are ordered so that l1 � l2 � ::: � lr where lk are
defined in (22) and define

�2
0 D

1

p
trf QRg (24)

�2
k D

1

p � k

 
trf QRg �

kX
iD1

li

!
for k=1, 2, ..., r : (25)

Let � be an index in f 0, 1, ..., r g which satisfies one of
followings

�2
� � l1 for � D 0

l� > �2
� � l�C1 for � D 1; 2, ..., r � 1

lr > �2
� for � D r

: (26)

The maximum likelihood estimators of �1, �2, ..., �r and
�2 for fixed ‚ and f v1, v2, ..., vr g under the conditions
�k � �2 for k D 1, 2, ..., r are obtained as follows:

�k D lk for k D 1, 2, ..., � (27)

�k D �2
� for k D � C 1, � C 2, ..., r (28)

�2
D �2

� : (29)

Of course, (27) is ignored if � D 0 and also (28) is ignored
if � D r .

1) Proof of the uniqueness of �: The uniqueness of the
index � is proved as follows. Since �2

k
depends on lk as shown

in

�2
k D

1

p � k

�
.p � k C 1/�2

k�1 � lk

�
; (30)

the following equivalence in inequalities is derived.

�2
k < lk , �2

k�1 < lk (31)

�2
k > lk , �2

k�1 > lk (32)

�2
k D lk , �2

k�1 D lk (33)

for k D 1, 2, ..., r :

If lk > �2
k

� lkC1 is not true for k D 1, 2, ..., r � 1, then
we have two cases that lk � lkC1 > �2

k
or �2

k
� lk � lkC1

for k D 1, 2, ..., r � 1 because of lk � lkC1. It follows from
the former case that lr > �2

r or � D r . From the later case, it
follows that �2

0 � l1 or � D 0. Therefore there exists at least
one index of � which satisfies one condition in (26).

Assuming � > 0 and l� > �2
� , then l� > �2

��1
follows from

(31) and l��1 > �2
��1 follows from l��1 � l�. Applying the

same procedure recursively, we have

lkC1 > �2
k for k D 0, 1, ..., � � 1: (34)

This indicates that �2
k

� lkC1 does not hold for k D 0, 1, ...,
� � 1 if l� > �2

� for � > 0.
Assuming � < r and �2

� � l�C1, then �2
�C1 � l�C1 follows

from (32) and (33) and �2
�C1 � l�C2 follows from l�C1 �

l�C2. Applying the same procedure recursively, we have

�2
k � lk for k D � C 1, � C 2, ..., r : (35)

This indicates that lk > �2
k

does not hold for k D �C1, �C2,
..., r if �2

� � l�C1 for � < r .
Therefore the index � which satisfies one condition in (26)

is unique.
2) Proof of (27), (28) and (29): The function

h.�/ D �

�
ln � C

l

�

�
(36)

has a single peak at � D l . Consider the case that the domain
of � is restricted to �2 � �. If �2 � l , the maximum value of
h.�/ is obtained at � D l . If l � �2, the maximum value of
h.�/ is obtained at � D �2.

Assuming that

l� > �2
� l�C1; (37)

and maximizing Lr with respect to �1, �2, ..., �r under the
conditions �k � �2 for k D 1, 2, ..., r , we can readily obtain
(27) and

�k D �2 for k D � C 1, � C 2, ..., r : (38)
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Substituting (38) into (21), Lr in (21) becomes equivalent to
L� as follows.

Lr .‚; �1; :::; �r ; v1; :::; vr ; �2/j�k D�2 for k D � C 1, � C 2, ..., r

D �N

 
ln
n
�1�2:::��

�
�2
�p��o

C

�X
kD1

lk

�k

C
1

�2

(
trf QRg �

�X
kD1

lk

)!
D L�.‚; �1; :::; ��; v1; :::; v�; �2/ (39)

Maximizing L� with respect to �2, we can readily obtain �2 D

�2
� or (29). It is consistent with the assumption (37).
3) Maximum Log-Likelihood Function: Substituting (27),

(28) and (29) into into (21), we have the formulation of the
log-likelihood function after maximizing with respect to �1,
�2, ... �r and �2 as follows.

Lr .‚; v1; :::; vr / D L�.‚; v1; :::; v�/

D �N ln
n
�1�2:::��

�
�2
�p��o

(40)

Finally in this subsection, we have to note that there is no
ML solution for the model of rankfS g D rankfP g D r unless
� D r , because the solutions in (28) belong to the marginal set
of the solution space �k > �2 for k D �C1, �C2 ..., r and the
marginal set does not included in the solution space. Instead
the ML solution for each model of rankfS g D rankfP g D k

for k D 0, 1, ..., � is obtained as

�i D li for i D 1, 2, ..., k (41)

�2
D �2

k : (42)

D. Maximization with Respect to v1, v2, ... vr

Next we consider the maximization of Lr with respect to
v1, v2, ..., vr assuming that lk > �2

r for k D 1, 2, ..., r .
Introducing Lagrange’s multipliers to realize the constraints

in (19) in a new criterion, taking derivatives of the new
criterion with respect to unknown real parameters in v1, v2,
..., vr and making the derivatives equal to zero, then we can
obtain a set of r equations in the complex form as follows.�

1

�2
r

�
1

lk

�
QRSS .‚/vk D ˛k1v1 C ˛k2v2 C ::: C ˛kr vr

(43)

˛ki D N̨ ik for k, i D 1, 2, ..., r :

(44)

where ˛ki is a complex number determined by Lagrange’s
multipliers and the bar indicates the complex conjugate.

Because of (19) and (22), multiplying (43) by vH
i from the

left, we have

˛ki D

�
1

�2
r

�
1

lk

�
vH

i
QRSS .‚/vk : (45)

From (44), we also have

˛ki D N̨ki D

�
1

�2
r

�
1

li

��
vH

k
QRSS .‚/vi

�H

D

�
1

�2
r

�
1

li

�
vH

i
QRSS .‚/vk : (46)

1) In the Case of lk ¤ li: From (45) and (46), we have
˛ki D 0 if lk ¤ li for k ¤ i . Therefore if lk ¤ li for
all combinations of k and i that k ¤ i , then we have the
eigenequation�

1

�2
r

�
1

lk

�
QRSS .‚/vk D ˛kkvk for k D 1, 2, ..., r :

(47)

Therefore v1, v2, ..., vr must be eigenvectors of the matrix
QRSS .‚/ and orthogonal each other. The Hermitian form lk D

vH
k

QRSS .‚/vk in (22) is an eigenvalue of the eigenvector vk

for k D 1, 2, ..., r .
2) In the Case of l1 D l2 D ... D l�: Let v1, v2, ..., vr be

the solutions which maximize Lr and assume that l1 D l2 D

... D l�.D l0/ for a certain � that � � r . Then the maximum
log-likelihood function is rewritten as

Lr .‚; v1; v2; v3; :::; vr / D �N ln
n
.l

�
0 l�C1:::lr

�
�2

r

�p�ro
�2

r D
1

p � r

0@trf QRg �

0@�l0 C

rX
kD�C1

lk

1A1A : (48)

and the equations (43) and (44) are reduced as follows.

QRSS .‚/vk D ˛0
k1v1 C ˛0

k2v2 C ::: C ˛0
k�v� (49)

˛0
kk D vH

k
QRSS .‚/vk D l0 (50)

˛0
ki D vH

i
QRSS .‚/vk D N̨

0
ik (51)

for k, i D 1, 2, ..., �:

Define the following 2 � 2 matrix A12�
vH

1

vH
2

�
QRSS .‚/Œv1 v2� D

�
l0 ˛0

12

N̨ 0
12 l0

�
D A12: (52)

The matrix A12 has two eigenvalues, i.e., l 0
1 D l0 � j˛12j

and l 0
2 D l0 C j˛12j. Let e1 and e2 be the unit eigenvectors

corresponding to l 0
1 and l 0

2, respectively. Define

v0
1 D Œv1 v2�e1 and v0

2 D Œv1 v2�e2: (53)

Then we have

v0H
1

QRSS .‚/v0
1 D eH

1
QA12e1 D l 0

1 D l0 � j˛12j; (54)

v0H
2

QRSS .‚/v0
2 D eH

2
QA12e2 D l 0

2 D l0 C j˛12j: (55)

If it holds that l 0
1 � �2

r , then we readily obtain the following
inequality.

Lr .‚; v0
1; v0

2; v3; :::; vr /

D �N ln
n
.l2

0 � j˛0
12j

2/l
��2
0 l�C1:::lr

�
�2

r

�p�ro
� Lr .‚; v1; v2; v3; :::; vr /: (56)

Proceedings of 2009 APSIPA Summit and Conference, Sapporo, Japan, October 4-7, 2009



The equal sign holds iff j˛0
12j D 0. Therefore we have j˛0

12j D

0 because v1, v2, ..., vr should give the maximum of Lr .
Although l 0

2 is greater than �2
r , l 0

1 may not. In the case that
l 0
1 � �2

r , the log-likelihood function is rewritten as

Lr .‚; v0
1; v0

2; v3; :::; vr / D Lr�1.‚; v0
2; v3; :::; vr /

D �N ln
�

.l0 C j˛0
12j/l

��2
0 l�C1:::lr

�
� 02

r�1

�p�rC1
�

(57)

where

� 02
r�1 D

1

p � r C 1

�
.p � r/�2

r C l 0
1

�
: (58)

Because l 0
1 is written in the Hermitian form of the non-

negative definite matrix QRSS .‚/ as shown in (54), l 0
1 has a

non-negative real value. Under the conditions 0 � l 0
1 � �2

r in
addition to �2

r < l0, we can derive the following inequality

Lr�1.‚; v0
2; v3; :::; vr / > Lr .‚; v1; v2; v3; :::; vr /: (59)

This conflicts with the assumption that v1, v2, ..., vr are the
solutions which maximize Lr . Therefore l 0

1 � �2
r and j˛12j

vanishes.
From the same discussion as above, we obtain ˛ki D 0 for

all combinations of k and i that k ¤ i in f 1, 2, ..., � g. Then
the equations (49) are rewritten as

QRSS .‚/vk D l0vk for k D 1, 2, ..., �: (60)

Therefore l0 becomes an eigenvalue of QRSS .‚/ with �

multiplicity and v1, v2 ... v� are the corresponding unit
eigenvectors orthogonal each other.

3) Selection of Eigenvalues: Let l1 � l2 � ::: � lq be the
eigenvalues of QRSS .‚/ for a certain fixed ‚. As well as the
definition in (25), we define

�2
k D

1

p � k

 
trf QRg �

kX
iD1

li

!
for k=1, 2, ..., q: (61)

and �2
0 as in (24). Also as well as the definition of � in (26),

we define � be an index in f 0, 1, ..., q g which satisfies one
of followings

�2
� � l1 for � D 0

l� > �2
� � l�C1 for � D 1; 2, ..., q � 1

lq > �2
� for � D q

: (62)

It is apparent that there is no ML solution for the model of
rankfS g D rankfP g D r if r > �. In the case of r � �, the
maximum log-likelihood function of the model of rankfS g D

rankfP g D r is given as

Lr .‚/ D �N ln
n
l1l2:::lr

�
�2

r

�p�ro
(63)

where �2
r is defined in (61). In other words, f l1, l2, ..., lr g

is the best selection of all choices of r eigenvalues from f l1,
l2, ..., lq g. It is proved as follows.

Let lk1
, lk2

, ..., lkr �1
be a certain choice of r �1 eigenvalues

from all eigenvalues. We consider how to select the r -th
eigenvalue form remaining p � r C 1 eigenvalues. We assume
that

lki
> �2

r�1.k1; k2; :::; kr�1/ for i D 1, 2, ..., r � 1; (64)

�2
r�1.k1; k2; :::; kr�1/ D

1

p � r C 1

 
trf QRg �

r�1X
iD1

lki

!
;

(65)

and define

Lr .�/ D �N ln
n
lk1

lk2
:::lkr �1

�
�
�2

r .�/
�p�ro

; (66)

�2
r .�/ D

1

p � r

�
.p � 1 C 1/�2

r�1.k1; k2; :::; kr�1/ � �
�

:

(67)

The curve of Lr .�/ as a function of � has a single valley
within the domain of 0 � � � .p�1C1/�2

r�1.k1; k2; :::; kr�1/

and becomes minimal at � D �2
r�1.k1; k2; :::; kr�1/.

Let lkr
be the largest eigenvalue of remaining p � r C 1

eigenvalues. In order to maximize Lr .�/ by substituting one
of remaining eigenvalues into �, the assignment � D lkr

is the
best, where lkr

> �2
r�1

.k1; k2; :::; kr�1/ is guaranteed by the
assumption r � �.

Removing the smallest eigenvalue from lk1
, lk2

, ..., lkr
and

adding the largest eigenvalue of the remaining eigenvalues, a
better selection of r eigenvalues is obtained. Iterating the same
procedure at most r times, the best selection of r eigenvalues
is obtained as l1, l2, ..., lr .

E. ML Estimation of ‚

At first, dependence of variables on ‚ is explicitly expressed
as follows: QRSS .‚/ in (23), its eigenvalues l1.‚/, l2.‚/, ...,
lq.‚/ and eigenvectors v1.‚/, v2.‚/, ..., vq.‚/, also �2

1 .‚/,
�2

2 .‚/, .., �2
q .‚/ in (61) and �.‚/ determined in (62).

The maximum log-likelihood functions L0.‚/, L1.‚/,
..., L�.‚/.‚/ defined by (63) for any fixed ‚ satisfy the
relationships

L0.‚/ < L1.‚/ < ::: < L�.‚/.‚/; (68)

which follow from the property of Lr .�/ in (66) and the
conditions lr .‚/ > �2

r .‚/ for r D 1, 2, ..., �.‚/.
If no condition is imposed on the rank of S or P , L�.‚/.‚/

gives the maximum value of the log-likelihood function for
fixed ‚. Therefore, the ML estimation O‚ of ‚ is determined
as follows.

O‚ D arg max
‚

L.‚/; (69)

L.‚/ D L�.‚/.‚/: (70)
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To find O‚, multivariate non-linear optimization techniques
should be used. The ML estimations OP and OR of P and R

are given as

OP D

�. O‚/X
kD1

�
lk. O‚/ � �2

�. O‚/
. O‚/

�
vk. O‚/vH

k . O‚/; (71)

OR D V S . O‚/ OPV H
S . O‚/ C �2

�. O‚/
. O‚/Ip: (72)

It is guaranteed that the estimated covariance matrix of signal
components

OS D

�
AH . O‚/A. O‚/

��1=2
OP
�
AH . O‚/A. O‚/

��H =2

(73)

is non-negative definite.
When the rank of S or P is restricted to be a certain fixed

r in f 1, 2, ..., q g, first we define the solution space �r

of ‚ in which the ML function of the model of rankfS g D

rankfP g D r can be defined. That is

�r D f‚ j r � �.‚/g D f‚ j lr .‚/ > �2
r .‚/g: (74)

The ML estimation O‚r of ‚ for the model of rankfS g D

rankfP g D r should be searched as

O‚r D arg max
‚2�r

Lr .‚/: (75)

However, because of the condition lr .‚/ > �2
r .‚/ in (74), the

marginal set �r = f ‚ j lr .‚/ D �2
r .‚/ and ‚ 2 �r g is not

included in �r , where �r is the closure of �r . Define

‚r D arg max
‚2�r

Lr .‚/: (76)

In the case that ‚r belongs to �r , O‚r does not exist. It happens
occasionally. If O‚r exists, then The ML estimations OP r and
ORr of P and R for the model of rankfS g D rankfP g D r

are given as

OP r D

rX
kD1

�
lk. O‚r / � �2

r . O‚r /
�

vk. O‚r /vH
k . O‚r / (77)

ORr D V S . O‚r / OP r V H
S . O‚r / C �2

r . O‚r /Ip (78)

and it is guaranteed that the following estimated covariance
matrix of signal components is non-negative definite.

OS r D

�
AH . O‚r /A. O‚r /

��1=2
OP r

�
AH . O‚r /A. O‚r /

��H =2

(79)

IV. SIMULATIONS

In this section, comparisons of the proposed formulation
of UML and the previous formulation [6], [7], [8], [9], In the
incoherent case, the previous formulation is written as follows.

O‚C D arg max
‚

LC .‚/ (80)
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Fig. 1. Comparisons of RMSE for proposed and conventional formulations
of UML DOA estimation. A uniform linear array of omni-directional sensors
with the sensor space of half wavelength is assumed. The three figures p �

q � r in the graph represent the number of sensors, the number of impinging
signals and the number of independent signals in the impinging signals. The
directions of arrival are 0ı and 8ı for q D 2 and 0ı, 8ı and 16ı for
q D 3. The number of sample vectors (snapshots) is 100. Optimal DOA’s for
both formulations are searched by Alternating Maximization algorithm with
a sequence of one-dimensional global search.

where

LC .‚/ D �N ln LS .‚/LN .‚/ (81)

LS .‚/ D detf QRSS .‚/g LN .‚/ D detfRNN .‚/g (82)

RNN .‚/ D O�2.‚/Ip�q (83)

O�2.‚/ D
1

p � q

n
trf QRg � trf QRSS .‚/g

o
(84)

The estimations of P and R are given as

OP C D QRSS . O‚C / � �2. O‚C /Iq (85)
ORC D V S . O‚C / OP C V H

S . O‚C / C �2. O‚C /Ip: (86)

In Fig. 1, the root mean squares errors (RMSE) of the
proposed estimation of DOA in (70) and the conventional
estimation in (80) are depicted. The scenario of the simulation
is shown in the figure caption.

From Fig. 1, it is found that the conventional formulation
fails to find DOA. The maximization of LC .‚/ is associated
with each minimization of LS .‚/ or LN .‚/. The local
solutions of O‚C associated with the local minimum of LS .‚/

are inadequate DOA, since OP C has negative eigenvalues.
When one of such local solutions becomes global solution,
the estimation of DOA fails. This is the reason of the failure
of the conventional formulation. While such problem never
happen in the proposed formulation.

V. CONCLUSIONS

The estimation of the covariance matrix of signal compo-
nents in the previous formulation of UML estimation becomes
non-negative definite in the condition of high SNR or a
large number of samples but is not guaranteed to be non-
negative definite although it must be non-negative definite.
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This paper present an exact formulation of the UML estimation
in which the estimation of the covariance matrix of the signal
components is guaranteed to be non-negative definite.
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