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Abstract—This paper introduces an efficient unsupervised
algorithm to discover motifs in multivariate data sequence.
Specifically, we apply our proposed work to detect repeating
segments on music feature vectors. The proposed algorithm,
namely Adaptive Motif Generation, scans the music features
online to construct a list of repeating candidate segments in
linear time. The candidate list is then used to populate a sparse
self-similarity matrix for further processing to generate the final
selections. The experimental results showed that the proposed
approach was able to obtain similar average F1 score compared to
the traditional self-similarity approach with significant reduction
in computational cost and memory usage.

I. I NTRODUCTION

Automatic motif discovery is an important research focus
in many diverse research areas. Examples include biological
sequence analysis [1], [2], video structure analysis [3], sub-
words/words discovery in speech [4], [5], repeating segments
discovery in music [6], [7], [8], [9], [10], [11], [12], and the
analysis of many other time series data [13], [14], [15], [16],
[17].

One popular application of motif discovery is to detect
repeating segments in music and it has received much at-
tention during the past decades. The repeating segments in
music are defined as segments that have similar melody. To
automatically detect music repeating segments, many unsu-
pervised techniques were proposed. For example, a break-
down RP-Tree [18] and a recursively scanning method [19]
were examined to discover patterns in MIDI sequence; In
addition, self-similarity matrix [6], [7], [8], [9], [10], [11],
beats detection [20] and dynamic time warping [21] have been
explored to detect repetitions in polyphonic music.

To analyze music data, one effective method is to construct
a self-similarity matrix [6] followed by searching for the
distinguishable stripes along the diagonals [7], [8], [9], [10],
[11]. A brief description of a self-similarity matrix can be
found in the next session. The use of self-similarity matrix is
popular as it allows robust techniques to be applied to detect
repeating sequences. Specifically, algorithms to ‘search’ for
the repetition are performed on the 2-D similarity matrix and
hence can exploit advanced image processing techniques to
recover noisy repetition sequences across neighboring regions.
The use of traditional similarity matrix however requires
O(N2) computational resources whereN is the number of
vectors in the sequence to be analyzed. Hence, the use of

self-similarity matrix is limited to short sequences due to the
high computational requirement. The analysis on longer music
pieces remains a difficult problem.

In reality, the occurrence of true repeating patterns for an
actual music piece in the self-similarity matrix is¿ 1%.
This motivates us to examine an approach that can efficiently
and robustly generate the self-similarity matrix without the
O(N2) computational cost. The efficiency factors we are
concerned with are the computational complexity and memory
requirements of the method. We propose the Adaptive Motif
Generation (AMG) algorithm to efficiently construct a sparse
similarity matrix using suffix tree construction algorithm. Our
proposed method modifies the symbolic suffix tree algorithm
to accept vectors as inputs so that global quantization of the
input vectors to symbols is avoided. In our tree construction
process, the insertion of a new vector not only compares its
similarity to each node’s template vector, we also measure
the current sequence’s similarity to each node’s sequences.
In addition, each node maintains an adaptive threshold to
control the insertion process. With these criteria, our proposed
method is more robust than global quantization. Repeating
sub-sequences can then be extracted from the constructed tree
to populate a sparse self-similarity matrix. As the number
of repeating segments found in the tree structure is very
small, the self-similarity matrix constructed is very sparse.
Our experimental results showed that the occupancy of the
similarity matrix is approximately1%.

Using a corpus of 30 songs, we compare the recall and
precision of repetitions obtained using the AMG versus a full
self-similarity matrix. Our results showed that the use of AMG
achieved similar performance with significantly reduced com-
putation performance in terms of memory and computation.

The remainder of the paper is organized as follows: Sec-
tion II briefly reviews related techniques for motif discovery
in multivariate sequence, Section III proposes our approach
to construct the sparse self-similarity matrix using AMG,
Section IV introduces the refinement framework to post-
process the candidate repeating segments, Section V reports
the experimental results and finally, we conclude in Section VI.

II. RELATED WORK

This section briefly discusses two categories of related
techniques to discover motifs from multivariate sequence:
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symbolizationanddirect search techniques.

A. Symbolization Techniques

This section describes the symbolization techniques for
motif discovery. The common strategy of these techniques is
to first convert the raw multivariate sequence into symbols
or signatures and then applying symbolic mining techniques
such as suffix tree, R*-tree [22], random projection [23],
etc to discover motifs. Example of classical symbolization
techniques include partitioning clustering [24], [25], [26] such
as K-means and hierarchical clustering algorithms such as
Clustering Feature-tree [27].

A closely related technique to symbolization is to create
indices from the raw data [28], [29], [30] - Such approach
was explored for fast similarity search in univariate time series
database by extracting and matching signatures. For example,
Agrawal et al. [28] transformed time series into frequency
domain and retained the first few Fourier coefficients to
index the whole sequence using R*-tree [22]. In an extension
of [28], [29] employed a sliding window over time series and
extracted the signatures so that sub-sequences can be matched
using efficient indexing methods. Dimensionality reduction
techniques such as Singular Value Decomposition [31] and
Discrete Wavelet Transform [32] were also explored to extract
signatures from time series for indexing.

The researchers [33] however claimed that the data clusters
and indices extracted by the above approaches are essentially
random. They instead propose the SAX [13] to transform the
univariate time series data into low-complexity symbolic repre-
sentation so that symbolic sequence search techniques such as
Approximation Distance Map [34] and random projection [23]
can be applied to find the motifs. The advantage of SAX is
its robustness to measurement noise, and hence it had been
used in different areas [35]. To apply SAX for multivariate
time series, the multivariate data is first projected into one
dimension using principle component analysis (PCA) and
then SAX is applied. Motifs are then found using minimum
description length [17]. As this approach only uses the first
component of PCA, it is limited to analyze data that can be
correctly represented by its first principal component [14].

B. Direct Search Techniques

This section describes the direct search techniques that
bypass the symbolization process by searching directly on the
multivariate time series data.

One example of such techniques is the self-similarity ma-
trix [7], [6], [8], [9] method used to visualize and detect
repeating segments in music. The music piece is first divided
into short overlapping frames to generate feature vectors,
and the pairwise similarity measure among these vectors are
evaluated to construct a self-similarity matrix. For example,
Foote [6] and Luet al. [9] constructed anN × N vector-
to-vector similarity matrix to visualize the similarities among
the N features of a music segment as shown in Figure 1.
The repeating musical patterns are then found using image
processing techniques by extracting the stripes in the similarity

matrix. Unfortunately, the self-similarity approach requires
a complexity ofO(N2) for memory and computational re-
quirement. This high computational requirement limits the
application of self-similarity approach to short sequences.

Fig. 1. A self-similarity matrix generated for the pop song “When You Say
Nothing at All” by Ronan Keating using the temporal chroma features (in
Section V).

In another approach, Oates [36] proposed PERUSE algo-
rithm to detect frequently occurring patterns from a set of
multivariate sensory data series. It adopts a sliding window
to step over the entire data. Dynamic programming is used to
identify the best occurrence of the candidate motifs. PERUSE
allows the repeating patterns found to be of variable lengths
but it assumes the motifs occur densely. The implementation
for the dynamic programming process is exhaustive and re-
quires high computation.

To circumvent the exhaustive search in [36], modeling
techniques such as HMM are explored to detect motifs from
general multivariate time series. Minnenet al. [4], [14] se-
lected the candidate motifs by estimating density mode for
each subsequence along with its k-nearest neighbors, and
HMM was built for each candidate to fit the time series
while the likelihood scores are used to rank the candidates.
Another extension of HMM is the hierarchical HMM [3] used
to discover recurrent patterns in video archives by modeling
newly occurred events.

The above mentioned techniques [3], [4], [14], [36] can
effectively detect motifs from multivariate data but they require
high computational cost. This motivates us to explore efficient
solutions for motif discovery in the next sections.

III. SPARSESELF-SIMILARITY MATRIX CONSTRUCTION

This section describes our proposed algorithm to efficiently
construct the sparse self-similarity matrix.

The main idea of our approach is to construct a data
representation structure that is similar to a suffix tree to
locate the repeating subsequences. In a nutshell, we extend
Ukkonen’s online suffix tree construction algorithm [37] to
analyze the input vector sequence without the symbolization
process.

A suffix tree is a data structure that can store all the
suffixes of a symbolic sequence [37], [38] into a tree structure.
By examining the nodes of a suffix tree, all the repeating
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substringswithin the sequence can be obtained. Hence, the
suffix tree can be exploited to generate candidate motifs
directly.

The Ukkonen’s online suffix tree construction technique is
popular as the algorithm can build the suffix tree at linear
computational cost. The algorithm scans the input symbolic
sequence sequentially and inserts the new input symbol to a
set of active suffix nodes. The active nodes are the nodes of the
tree that had matched the current input symbol and is updated
for each new input symbol. This implies that the active node’s
branch had matched the existing input subsequence. However,
Ukkonen’s method can only build suffix trees for symbolic
sequences.

Our approach exploits the suffix tree structure [38] to detect
repeating subsequences by constructing a list of truncated suf-
fixes with equal length to locate the repeating subsequences of
a feature vector sequence. To achieve an efficient construction
process, we organize these suffixes using a tree structure as
shown in Figure 2, i.e., only the root node can have multiple
children.
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Fig. 2. The resulting candidate motif representation with Adaptive Motif
Generation algorithm.

The Ukkonen’s algorithm cannot be directly applied to
scan sequences of vectors. This section discusses our novel
extension to [37] to accept vectors as input. Specifically, we
modified the insertion criteria to i) compare similarity mea-
sures between vectors with an adaptive threshold for robust
insertion, ii) to consider similarity across current segment as
opposed to only considering current input vector as part of
the insertion criteria, iii) we restricted the tree’s internal node
to have only one child for practical realization. We name this
new online tree construction algorithm as the Adaptive Motif
Generation (AMG) in which “motif” means the repeating
segments (or subsequences) of the music piece in this paper.
The new algorithm retains the efficiency of [37] as it also
constructs the tree structure in linear time.

A. Adaptive Motif Generation

Figure 2 shows the overall structure of a tree constructed
by the proposed AMG algorithm. Each circle in the tree
represents a nodeW k

h whereh denotes the depth andk the
branch number of the tree. LetK denotes the total number of
branches. To manage the tree’s growth, the maximum length of
each branch will be set toA whereA << N . The value ofA
is database dependent, and should be large enough to capture

segments of actual motifs. We will discuss the selection ofA
in the next session.

In AMG representation (Figure 2), each branch represents a
candidate motif, and the tree structure can be interpreted as a
list of K candidate motifs with length equals toA. The details
of the implementation is as follows:

To capture the repeating segment information, each node
W k

h contains four types of information: the node’s template
vector vk

h, the time stampfk
h where vk

h first occurred, a
similarity threshold valueαk

h, and a listΨk
h that contains the

time stamps of all input vectors that have been inserted into
the node.

The AMG algorithm is summarized in Table I. The follow-
ing symbols are used:W 0

0 is the root node,ui is the input
vector at frame indexi, N is the number of features in the
sequence,γ1 is a user defined threshold value,set1 is the set
of active nodes andset2 is the set of modified nodes during
each iteration of the algorithm. The node poolset1 is the set
of candidate nodes that may acceptui as its child during each
iteration of the construction algorithm. The set of candidate
nodes are generated byfroot(W 0

0 ,ui) and fbranch(W k
h ,ui).

These two functions evaluate if the input vectorui needs to
be inserted into the tree at the root node and non-root node
respectively. The insertion process to the tree is similar to [37].
The following paragraphs present the details offroot(W 0

0 ,ui)
andfbranch(W k

h ,ui):
1) Insertion at root node:froot(W 0

0 ,ui): The function
froot(W 0

0 ,ui) evaluates the input vectorui at the root node
to determine if

• H1: ui can be used to create a new branch in the tree,
• H2: ui can be inserted into existing branch(es).

The function examines both hypothesis (H1, H2) and returns
the set of nodes that satisfies either hypothesis (either newly
created nodes or modified nodes).

H1: This condition evaluates if a new candidate motif
branch will be created at depth 1. A new branch will be created
if no existing branches’ template vector is similar to the input
vectorui. In other words, to create a new branch in the tree,

TABLE I
THE AMG ALGORITHM USED TO CREATE CANDIDATE MOTIFS.

Input: vector sequencesui, i = 1, 2, . . . , N
Initialize: create first branch’s nodeW 1

1 for input u1

1) K = 1, i = 1, h = 1
2) CreateW K

h with vK
h ← ui, fK

h ← i, ΨK
h ← {i}, αk

1 = γ1.
3) set1 ← {W K

h } // Active branches
4) set2 ← {}

For i = 2 : N

{modified nodes} = froot(W 0
0 ,ui)

set2 = {modified nodes}
For each nodeW k

h ∈ set1

• {modified nodes} = fbranch(W k
h ,ui)

• set2 ← set2 ∪ {modified nodes}
End
set1 ← set2
set2 ← {}

End
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thecriterionis that the input vectorui’s similarity to all current
depth 1 nodesW k

1 ’s template vectorvk
1 is less than a user

defined thresholdγ2. If this condition is satisfied, a new node
will be created and this node is returned by the function.

In our work, the Pearson correlation coefficient [39] is used
to measure the similarity between two vectors. Specifically, the
Pearson correlation between two vectorsu and v is defined
as

ρ(u,v) =
∑d

r=1(ur − u)(vr − v)√∑d
r=1 (ur − u)2

∑d
r=1 (vr − v)2

(1)

whereur, vr are the rth elementof u andv respectively,d
is the dimensionality of the vectors, andu, v arethe mean of
vectoru andv.

H2: To verify if the current input vectorui can be inserted
into thekth branch of the tree, we evaluateβk

1 the similarity
betweenui to thekth branch first template vector,

βk
1 = ρ(vk

1 ,ui) (2)

If βk
1 is greater than the node’s thresholdαk

1 , the corresponding
node’sΨk

1 is updated to include the time stampi. The set of
modified nodes will be returned by the function and those
nodes will become the “active” nodes that must be verified
for the next input vector.

2) Insertion at branch node:fbranch(W k
h ,ui): Before

we discuss the details offbranch(W k
h ,ui), we first dis-

cuss the nodes belonging toset1 that is used to evaluate
fbranch(W k

h ,ui). The nodesW k
h in set1 are the “active”

nodes, i.e., the sequence of template vectors at these active
nodes’ branch from depth of1 . . . h has matched the recent
input vector sequenceui−h . . .ui−1. For the current input
vector ui, the functionfbranch(W k

h ,ui) verifies if this new
input vector should be appended to the active branches.

The function fbranch(W k
h ,ui) evaluatesui for non-root

nodeW k
h , i.e. h > 0 to determine if

• H3: ui can be used to create a new child nodeW k
h+1,

• H4: ui can be inserted into the existing child nodeW k
h+1.

The function will examine either hypothesis (H3 or H4) and
return only one or no modified node.

H3: If W k
h has no child node andh < A, a new child

node W k
h+1 will be created and returned by the function.

By growing the branch with a new child, we can view the
operation as extending the current candidate motif by 1 vector.

H4: If W k
h has a child node, we will verify if the current

input vectorui can be inserted into the existingkth branch
of the tree. Different toH2’s Eq. 2 which evaluates only
the similarity between the current input vector to one node’s
template vector, we extend Eq. 2 to measure the similarity
between the current input vector sequence toW k

1...(h+1) motif.
Specifically, we evaluate the segment similarity by

βk
h+1 =

∑min(h,λ−1)
r=0 ρ(vk

h+1−r,ui−r)
min(h, λ− 1)

(3)

whereλ is the user defined segment length.

To verify if ui can be inserted into thekth branch of the
tree,βk

h+1 is compared to thresholdαk
h+1. If βk

h+1 is greater
thanαk

h+1, the input vector time stamp informationi will be
included byΨk

h+1 and the functionfbranch(W k
h ,ui) returns

the nodeW k
h+1, otherwise null.

In our system, eachαk
h+1 is adaptive so that the sequence

being analyzed can influence the threshold value. This makes
the insertion process more robust as opposed to having a single
fixed threshold. Theαk

h is updated by

αk
h+1 = αk

h − (βk
h − βk

h−1), (4)

where h ≥ 1, and βk
0 = βk

1 . The adaptive thresholdαk
h+1

has the following behaviors:αk
h+1 decreases when the past

segment similarityβk
h is better than its predecessor, andαk

h+1

increases whenβk
h is poorer than its predecessor. The adaptive

threshold is modified thus so that sequences with intermittent
poor segment similarity will be retained if past segment
similarity has been good.

B. The AMG Parameter Settings

The motif discovery process of the AMG algorithm is
controlled by the following four parameters, namely,A, λ,
γ1 and γ2. The purposes of these parameters are discussed
below:

1) The parameterA specifies the maximum depth of the
tree and its value should be set to a length that can
capture a meaningful portion of the motif. The value of
A is however not critical as the refinement step of our
proposed system has the ability to merge neighboring
motifs.

2) The parameterλ specifies the length of the segment to
evaluate the similarity measure as specified in Eq. 3. As
in the selection of parameterA, the value ofλ should
be chosen long enough to capture a motifs sequence.
A larger value ofλ will smooth the segment similarity
measure more significantly.

3) The thresholdγ1 is used to initializeαk
1 . As αk

1 is
the first node’s threshold at thekth candidate motif, its
setting is important since it determines if each new input
vector will be inserted into the branch. An unreasonably
high setting will stop a true repeating sequence from
being inserted, while an unreasonably low setting will
generate too many false alarms. Hence, the value ofγ1

is critical to the success of AMG. In our experiments,
we select a small development corpus from the same test
domain. We then evaluate all pairwise similarity between
the vectors and select the top10th percentile pairwise
similarity value asγ1.

4) The thresholdγ2 is used in the evaluation of hypothesis
H1. The value determines whether a new branch should
be created for the input vector. The suitable value for
γ2 is γ1 < γ2 ≤ 1. A higher γ2 value will allow more
branches to be created. In our experimental work,γ2 is
set to the top5th percentile pairwise similarity value of
the development set (as discussed in Step (3)).
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C. Discussion:AMG vs. Ukkonen’s Suffix Tree Construction

The insertion criteria of Ukkonen’s algorithm for symbolic
suffix tree are based on exact match evaluation which com-
pares the input symbol to the node’s template. In contrast, the
insertion criteria for AMG are not as straight forward since the
input are vectors - this implies that the similarity comparison
must use threshold for the decision process. However, a simple
pairwise similarity evaluation of current input vector to the
node’s template vector cannot reflect the global correlation
of two sequences and hence is not robust. To overcome
this shortcoming, the AMG employs a segment-to-segment
similarity measure with an adaptive threshold to evaluate if
the current vector should be inserted into the tree. Hence,
the insertion process can tolerate intermittent poor pairwise
similarities measured with candidate motifs. Finally, the AMG
is also different to the general suffix tree construction as
we restrict each non-root node to have only one child. This
restricts the tree’s growth and allows for a practical realization.
Our experimental results show that this realization did not
cause serious degradation in repeating segments detection.

IV. CANDIDATE REPEATING SEGMENTSREFINEMENT

In Figure 2, each branch of the AMG generated structure
represents a candidate motif. These candidate motifs must be
further processed to extract true repeating patterns because:
(i) the candidate motifs will often contain redundant patterns
such as trivial matches; (ii) the candidate motifs can be merged
to form longer patterns, (iii) the AMG algorithm may miss
detecting true motifs, and (iv) we need to align the boundaries
of the found motifs.

To address the above four issues, a direct approach is to
capture the candidate motifs’ occurrences in a sparseN ×N
matrix whereN is the number of vectors in the input sequence,
and then refine the obtained patterns to generate the final
selection. We call this matrix the candidate motif matrix, and
the elements of this matrix whose values are ‘1’ indicate the
occurrence of a repeating segment. The interpretation of this
matrix is similar to the binarized self-similarity matrix used
for motif discovery [9]. Hence, existing techniques such as [8],
[9] to refine the similarity matrix and pattern merging can be
applied. In addition, missing motifs can also be immediately
identified from this matrix (see Section IV-C).

Different from [8], [9], our proposed candidate motif matrix
generated by the AMG is immediately a sparseN ×N matrix
as opposed to the conventional method to generate the fullN×
N self-similarity matrix. Our experimental results (Section V)
show that the occupancy of the candidate motif matrix is only
about1% of the full matrix and the memory usage to construct
the AMG structure isO(AK).

Figure 3 illustrates our proposed refinement framework. The
candidate motifs generated by AMG is first used to popu-
late the sparse candidate matrix. This matrix is subsequently
converted to a time-lag matrix similar to [8], [9] for the re-
finement process such as: pattern merging, pattern duplication
and boundary refinement. The details of the procedure are
described in the following sub-sections.
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Fig. 3. The proposed process to refine the candidate motifs obtained by AMG
algorithm.

A. Candidate Motif Matrix Generation

The candidate motifs can be easily retrieved from the
structure (Figure 2) constructed by AMG by detectingΩ, the
set of nodesW k

h which satisfy the following conditions:

h > λ, (5)

|Ψk
h| > 1, (6)

|Ψk
h| 6= |Ψk

h+1|, (7)

where “| |” indicates the number of elements in the set. Eq. 5
restricts the length of candidate motifs to be at leastλ, Eq. 6
guarantees that the captured candidate motifs have occurred at
least twice, Eq. 7 is used to choose the set of detected patterns
with the longest length.

These detected patterns are used to populate the candi-
date motif matrix by assigning ‘1’ to the positions where
the patterns occur, specifically, the repeating patterns are at
coordinates(Ψk

m(j), fk
m) of W k

m=1..h where W k
h ∈ Ω, and

Ψk
m(j) are the elements ofΨk

m

For the convenience of processing, the candidate motif
matrix is then converted to a time-lag matrixT [9]. By this
conversion, the repeating patterns will be reflected as parallel
vertical lines inT and redundant neighboring patterns can be
easily detected and removed.

B. Pattern Merging

During the construction of the AMG structure, the algorithm
will record every possible candidate motif. Hence, many
neighboring candidates will be generated. These neighboring
motifs should be merged to find longer repeating patterns. To
merge these neighboring motifs, each vertical line in the time
lag matrix is first dilated and then eroded to form a new sparse
matrix T1. The objective is to extract the longest vertical line
for each neighborhood.
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C. Pattern Duplication

If the input sequence is noisy, the AMG algorithm may
not be able to capture every repeating pattern of a candidate
motif. However, the repetition occurrence in the candidate
motif matrix can be further analyzed to sought out missing
repeating pairs. To describe what we mean, we describe the
following scenario: if segmentsQ1, Q2 andQ3 are sequences
of the same motif, but due to noise, the sequences{Q1, Q2}
were found under one candidate motif selection, while the
sequences{Q2, Q3} were found in a separate motif selection.
Let δjk denote the frame index differences between pattern
{Qj , Qk}. Due to the characteristics of the time-lag matrix,
the patternQ2 will be marked in two locations, one is a vertical
line that is parallel toQ1 with a distance ofδ12 along thex-
axis, and the other vertical line is along they-axis with a
distance of alsoδ12 to Q1(see Figure 4).
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Fig. 4. The illustration of the repetition occurrence and pattern duplication
process in the time-lag matrix.

In this situation, we can infer from the time-lag matrix that
Q3 should also be included inQ1’s set [9]. To exploit this
relationship, our refinement process will duplicate all vertical
lines in T1 to all possible candidate positions belonging to
the same family hence to form a new matrixT2. The process
is illustrated in Figure 4.

D. Boundary Refinement

Noise may also cause mis-alignments in the boundaries of
the obtained candidate motifs. The boundaries can be aligned
by either extending or shrinking the detected patterns. The
details of the boundary alignment process can be found in [9].
Therefore, a new matrixT′ can be obtained by aligning
the boundaries inT2. After the refinement process, the final
motifs can be easily retrieved from matrixT′.

V. EXPERIMENTS AND DISCUSSION

Using a corpus of 30 songs1, we compare the recall and
precision of repetitions obtained using the AMG constructed

1The 30 songs’ feature database as well as their re-
peating segments location information are released at
http://www3.ntu.edu.sg/home/aseschng/SpeechTechWeb/projects/projects.htm.

sparse similarity matrix versus a full similarity matrix. Our test
corpus consists of 30 pieces of English pop songs performed
by both male and female singers. From the test corpus,
63 repeating segments with an average duration 25.6sec are
identified. There are a total of 198 instants for these repeating
segments. These instants are used as our ground truth patterns.

To carry out the experiment, the test corpus is first down-
sampled to 11KHz, mono and 16 bits per sample for feature
extraction. The feature used is derived from the 12 dimensional
chroma vector [7] which is calculated from every 250msec mu-
sic segment with 50msec hop size. The spectrum information
in seven musical octaves that span from 32.5Hz to 4KHz is
used. Each extracted chroma vector is normalized by dividing
each element by the vector’s maximum value.

As the chroma feature captures information in a 250msec
window, slight offset of the analysis window may affect
the feature values. As such, researchers [9] have proposed
to generate features from a much longer analysis window.
Following their strategy, our used feature is the mean and
variance of 16 consecutive chroma features with a hop size of
3 frames. This translates to an analysis window of 1 second
and a shift of 150msec to generate a feature vector of 24
dimensions.

This experiment compares the performance of our proposed
AMG to the traditional self-similarity approach [9] to search
for repeating segments. Both approaches will generate the
time-lag matrix using the same features and are post-processed
by the same refinement framework as described in Section IV.

The parameter settings used for the AMG approach are:
maximum depth of the treeA = 100 (this setting allows
us to capture 16sec music segment), the segment length
λ = 61 (approximates 10sec duration). The thresholdsγ1

andγ2 are selected using an independent development corpus
of 20 English songs, and they were set as 0.367 and 0.684
respectively.

A. Evaluation Criteria

To evaluate the performance of the two approaches, repeat-
ing segments inT′ generated from Section IV are compared
with the ground truth patterns. LetG denote the ground truth
patterns in a sparse binarised time-lag matrix for each song.
The vertical lines in matrixG are then duplicated as described
by Section IV. To achieve a robust and stable evaluation,
a ±1sec window mismatch among repeating segments is
allowed. This is achieved by blurring all the lines inG to
form a new matrixG′ for the±1sec offset error. Therefore, the
correctly detected repeating segments can be found in matrix
T̂ by

T̂ = T′ ∧G′, (8)

where “∧” denotes the element-wise logical “AND” operator.

In this paper, the recall is defined as|T̂||G| and the precision

is defined as |T̂||T′| , where “| |” denotes number of non-zero
elements in the matrix.
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F1-Measure Comparison
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Fig. 5. The F1-measure for each individual song using the self-similarity matrix approach and our proposed AMG approach.
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Fig. 6. The above figure compares the memory usage requirement between the AMG and self-similarity approach for each individual song. The average
memory requirement of AMG is approximately2% of that required by the self-similarity approach. The ratioK/N is also plotted to illustrate the number
of branches created for each song.
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Fig. 7. The above figure compares the computational requirements between the AMG and self-similarity approach for each individual song.

B. Evaluation Results

The F1 measure for each individual song is shown in
Figure 5. The average recall, precision and F1-measure of all
the testing songs are shown in Table II.

As the self-similarity approach calculates the similarity
measure between all pairwise vectors, the matrix will contain
all similarity information in the sequence for motif detection.
Therefore, the ability to extract and find correct motifs relies
on the pattern refinement process. Since the refinement process
and features used are the same for the two approaches, this

TABLE II
AVERAGE PERFORMANCE COMPARISON BETWEEN THEAMG AND

SELF-SIMILARITY APPROACH FOR 30 SONGS.

Recall Precision F1
AMG 0.590 0.560 0.575
Self-Similarity 0.569 0.558 0.564

experimentmeasures how well the AMG approach can capture
the “correct” candidate motifs. Our results in Figure 5 and
Table II show that the two approaches have almost the same
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performance- This indicates that the proposed AMG approach
is able to generate correct candidate motifs.

In addition, we compared the memory usage between the
AMG and self-similarity approach. The AMG structure (Fig-
ure 2) stores all the similarity information in each node and
hence requiresO(AK) memory space. However, the self-
similarity approach requiresO(N2) memory space to store all
pairwise similarity measurements. To illustrate the difference
in memory usages between the two approaches, we plot
the ratiosAK/N2 and K/N in Figure 6 for each song’s
experiment.

Furthermore, we evaluated the element occupancy of the
candidate motif matrix and found that for all 30 songs data,
the candidate matrix is 99% sparse.

To compare the computation complexity requirement be-
tween the similarity approach and the AMG approach, we
measure the computational requirements needed to create the
sparse time-lag matrix by these two approaches (Figure 3).
For the self-similarity approach, it requiresN(N − 1)/2
number of pairwise similarity measures (Eq. 1). For the AMG
approach, we recorded the total number of vector-to-vector
similarity comparisons for the 30 songs (Figure 7). The results
show that the AMG approach requires an average of10%
computation cost as compared to the self-similarity approach.
Furthermore, the self-similarity approach requires additional
processing such as low-pass filtering [8] and other image
processing techniques [9] to generate the sparse time-lag
matrix. The AMG approach is again computationally more
efficient as the sparse time-lag matrix can be directly generated
from the candidate motif matrix [9].

VI. CONCLUSIONS

We have proposed a novel approach, AMG, to detect
the repeating patterns in a sequence of vectors. The online
linear-time suffix tree construction algorithm is extended to
accept vectors as input so that the exact matching criteria
are avoided. To make the algorithm more robust, segment-
to-segment similarity is used to smooth the outliers in the
sequence. The candidate repeating segments obtained by the
AMG method are then refined using a sparse similarity matrix
to find the final patterns.

The experimental results show that AMG is significantly
more efficient in terms of computation and memory require-
ment as compared to self-similarity approach and yet achieved
similar performance to discover repeating segments in a 30
songs’ corpus.
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