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Abstract—This paper introduces an efficient unsupervised self-similarity matrix is limited to short sequences due to the

algorithm to discover motifs in multivariate data sequence. high computational requirement. The analysis on longer music
Specifically, we apply our proposed work to detect repeating pieces remains a difficult problem

segments on music feature vectors. The proposed algorithm, . .
namely Adaptive Motif Generation, scans the music features In reality, the occurrence of true repeating patterns for an

online to construct a list of repeating candidate segments in actual music piece in the self-similarity matrix s 1%.
linear time. The candidate list is then used to populate a sparse This motivates us to examine an approach that can efficiently
self-similarity matrix for further processing to generate the final  and robustly generate the self-similarity matrix without the
selections. The experimental results showed that the proposedO(Nz) computational cost. The efficiency factors we are

approach was able to obtain similar average F1 score compared to d with th tati | lexit d
the traditional self-similarity approach with significant reduction concerned with are the computational complexity and memory

in computational cost and memory usage. requirements of the method. We propose the Adaptive Motif
Generation (AMG) algorithm to efficiently construct a sparse
. INTRODUCTION similarity matrix using suffix tree construction algorithm. Our

Automatic motif discovery is an important research focusroposed method modifies the symbolic suffix tree algorithm
in many diverse research areas. Examples include biologitalaccept vectors as inputs so that global quantization of the
sequence analysis [1], [2], video structure analysis [3], suipput vectors to symbols is avoided. In our tree construction
words/words discovery in speech [4], [5], repeating segmereocess, the insertion of a new vector not only compares its
discovery in music [6], [7], [8], [9], [10], [11], [12], and the similarity to each node’s template vector, we also measure
analysis of many other time series data [13], [14], [15], [16the current sequence’s similarity to each node’s sequences.
[17]. In addition, each node maintains an adaptive threshold to

One popular application of motif discovery is to deteatontrol the insertion process. With these criteria, our proposed
repeating segments in music and it has received much @atethod is more robust than global quantization. Repeating
tention during the past decades. The repeating segmentsui-sequences can then be extracted from the constructed tree
music are defined as segments that have similar melody. tbopopulate a sparse self-similarity matrix. As the number
automatically detect music repeating segments, many unsifi-repeating segments found in the tree structure is very
pervised techniques were proposed. For example, a bresinall, the self-similarity matrix constructed is very sparse.
down RP-Tree [18] and a recursively scanning method [1@ur experimental results showed that the occupancy of the
were examined to discover patterns in MIDI sequence; Bimilarity matrix is approximatelyl %.
addition, self-similarity matrix [6], [7], [8], [9], [10], [11], Using a corpus of 30 songs, we compare the recall and
beats detection [20] and dynamic time warping [21] have beerecision of repetitions obtained using the AMG versus a full
explored to detect repetitions in polyphonic music. self-similarity matrix. Our results showed that the use of AMG

To analyze music data, one effective method is to construmthieved similar performance with significantly reduced com-

a self-similarity matrix [6] followed by searching for theputation performance in terms of memory and computation.
distinguishable stripes along the diagonals [7], [8], [9], [10], The remainder of the paper is organized as follows: Sec-
[11]. A brief description of a self-similarity matrix can betion Il briefly reviews related techniques for motif discovery
found in the next session. The use of self-similarity matrix i@ multivariate sequence, Section Ill proposes our approach
popular as it allows robust techniques to be applied to detest construct the sparse self-similarity matrix using AMG,
repeating sequences. Specifically, algorithms to ‘search’ fBection IV introduces the refinement framework to post-
the repetition are performed on the 2-D similarity matrix androcess the candidate repeating segments, Section V reports
hence can exploit advanced image processing techniqueshimexperimental results and finally, we conclude in Section VI.
recover noisy repetition sequences across neighboring regions.
The use of traditional similarity matrix however requires
O(N?) computational resources wheré is the number of  This section briefly discusses two categories of related
vectors in the sequence to be analyzed. Hence, the useeghniques to discover motifs from multivariate sequence:

Il. RELATED WORK
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symbolizationand direct search techniques. matrix. Unfortunately, the self-similarity approach requires
a complexity of O(IN?) for memory and computational re-
qguirement. This high computational requirement limits the

This section describes the symbolization techniques fapplication of self-similarity approach to short sequences.
motif discovery. The common strategy of these techniques is
to first convert the raw multivariate sequence into symbols
or signatures and then applying symbolic mining techniques
such as suffix tree, R*tree [22], random projection [23],
etc to discover motifs. Example of classical symbolization
techniques include partitioning clustering [24], [25], [26] such
as K-means and hierarchical clustering algorithms such as
Clustering Feature-tree [27].

A closely related technique to symbolization is to create
indices from the raw data [28], [29], [30] - Such approach
was explored for fast similarity search in univariate time series e
database by extracting and matching signatures. For example,

Agrawal et al. [28_] tranSformed time Sene_s into fr_eque”%ig. 1. A self-similarity matrix generated for the pop song “When You Say
domain and retained the first few Fourier coefficients tQothing at All” by Ronan Keating using the temporal chroma features (in
index the whole sequence using R*-tree [22]. In an extensiSaction V).

of [28], [29] employed a sliding window over time series and

extracted the signatures so that sub-sequences can be matchéd another approach, Oates [36] proposed PERUSE algo-
using efficient indexing methods. Dimensionality reductiofithm to detect frequently occurring patterns from a set of
techniques such as Singular Value Decomposition [31] aftdltivariate sensory data series. It adopts a sliding window
Discrete Wavelet Transform [32] were also explored to extralst step over the entire data. Dynamic programming is used to
signatures from time series for indexing. identify the best occurrence of the candidate motifs. PERUSE

The researchers [33] however claimed that the data clustalews the repeating patterns found to be of variable lengths
and indices extracted by the above approaches are essentlillyit assumes the motifs occur densely. The implementation
random. They instead propose the SAX [13] to transform tiier the dynamic programming process is exhaustive and re-
univariate time series data into low-complexity symbolic repréiuires high computation.
sentation so that symbolic sequence search techniques such 3¢ circumvent the exhaustive search in [36], modeling
Approximation Distance Map [34] and random projection [z:a]echniques such as HMM are explored to detect motifs from
can be applied to find the motifs. The advantage of SAX @eneral multivariate time series. Minnen al. [4], [14] se-
its robustness to measurement noise, and hence it had bleeted the candidate motifs by estimating density mode for
used in different areas [35]. To apply SAX for multivariat€ach subsequence along with its k-nearest neighbors, and
time series, the multivariate data is first projected into ofdMM was built for each candidate to fit the time series
dimension using principle component analysis (PCA) anthile the likelihood scores are used to rank the candidates.
then SAX is applied. Motifs are then found using minimurfnother extension of HMM is the hierarchical HMM [3] used
description length [17]. As this approach only uses the firt@ discover recurrent patterns in video archives by modeling
component of PCA, it is limited to analyze data that can beewly occurred events.
correctly represented by its first principal component [14].  The above mentioned techniques [3], [4], [14], [36] can

effectively detect motifs from multivariate data but they require
B. Direct Search Techniques high computational cost. This motivates us to explore efficient

This section describes the direct search techniques tsatutions for motif discovery in the next sections.
bypass the symbolization process by searching directly on the
multivariate time series data. [1l. SPARSESELF-SIMILARITY MATRIX CONSTRUCTION

One example of such techniques is the self-similarity ma- This section describes our proposed algorithm to efficiently
trix [7], [6], [8], [9] method used to visualize and detectonstruct the sparse self-similarity matrix.
repeating segments in music. The music piece is first dividedThe main idea of our approach is to construct a data
into short overlapping frames to generate feature vectorspresentation structure that is similar to a suffix tree to
and the pairwise similarity measure among these vectors &reate the repeating subsequences. In a nutshell, we extend
evaluated to construct a self-similarity matrix. For exampléJkkonen’s online suffix tree construction algorithm [37] to
Foote [6] and Luet al. [9] constructed anV x N vector- analyze the input vector sequence without the symbolization
to-vector similarity matrix to visualize the similarities amongprocess.
the N features of a music segment as shown in Figure 1.A suffix tree is a data structure that can store all the
The repeating musical patterns are then found using imagfixes of a symbolic sequence [37], [38] into a tree structure.
processing techniques by extracting the stripes in the similarBy examining the nodes of a suffix tree, all the repeating

A. Symbolization Techniques
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substringswithin the sequence can be obtained. Hence, tlsegments of actual motifs. We will discuss the selectiom of
suffix tree can be exploited to generate candidate motifsthe next session.
directly. In AMG representation (Figure 2), each branch represents a
The Ukkonen’s online suffix tree construction technique isandidate motif, and the tree structure can be interpreted as a
popular as the algorithm can build the suffix tree at linedist of K candidate motifs with length equals th The details
computational cost. The algorithm scans the input symboli¢ the implementation is as follows:
sequence sequentially and inserts the new input symbol to &o capture the repeating segment information, each node
set of active suffix nodes. The active nodes are the nodes of thé contains four types of information: the node’s template
tree that had matched the current input symbol and is updatesttor v;j, the time Stampf}’f where v,’; first occurred, a
for each new input symbol. This implies that the active nodesmilarity threshold valuexf, and a list¥¥ that contains the
branch had matched the existing input subsequence. Howevete stamps of all input vectors that have been inserted into
Ukkonen’s method can only build suffix trees for symboli¢ghe node.
sequences. The AMG algorithm is summarized in Table I. The follow-
Our approach exploits the suffix tree structure [38] to deteielg symbols are used¥ is the root nodeu; is the input
repeating subsequences by constructing a list of truncated sifetor at frame index, N is the number of features in the
fixes with equal length to locate the repeating subsequencesefluencey; is a user defined threshold valuet1 is the set
a feature vector sequence. To achieve an efficient constructiiractive nodes andet2 is the set of modified nodes during
process, we organize these suffixes using a tree structurezaéh iteration of the algorithm. The node paet1 is the set
shown in Figure 2, i.e., only the root node can have multiplsf candidate nodes that may acceptas its child during each
children. iteration of the construction algorithm. The set of candidate
nodes are generated b, (W, u;) and foranen (WE, ;).
These two functions evaluate if the input vector needs to
be inserted into the tree at the root node and non-root node
respectively. The insertion process to the tree is similar to [37].
The following paragraphs present the detailsfof,:(W¢, u;)
and fbranch(W}]Lga ui):
1) Insertion at root node:f,...(WQ,u;): The function
froot (W3, ;) evaluates the input vectar; at the root node
to determine if

6

Fig. 2. The resulting candidate motif representation with Adaptive Motif
Generation algorithm.

o H1: u; can be used to create a new branch in the tree,
e H2: u; can be inserted into existing branch(es).

The function examines both hypothesis (H12) and returns

The Ukkonen’s algorithm cannot be directly applied téhe set of nodes that satisfies either hypothesis (either newly
scan sequences of vectors. This section discusses our néy@ated nodes or modified nodes).
extension to [37] to accept vectors as input. Specifically, weH1: This condition evaluates if a new candidate motif
modified the insertion criteria to i) compare similarity meaPranch will be created at depth 1. A new branch will be created
sures between vectors with an adaptive threshold for robifsho existing branches’ template vector is similar to the input
insertion, ii) to consider similarity across current segment &€ctoru;. In other words, to create a new branch in the tree,
opposed to only considering current input vector as part of
the insertion criteria, iii) we restricted the tree’s internal node
to have only one child for practical realization. We name this
new online tree construction algorithm as the Adaptive Motif

TABLE |
THE AMG ALGORITHM USED TO CREATE CANDIDATE MOTIFS

Input: vector sequences;,: = 1,2,..., N

Generation (AMG) in which “motif” means the repeating
segments (or subsequences) of the music piece in this pal
The new algorithm retains the efficiency of [37] as it als
constructs the tree structure in linear time.

A. Adaptive Motif Generation

Figure 2 shows the overall structure of a tree construct|
by the proposed AMG algorithm. Each circle in the tre
represents a nodd’} whereh denotes the depth arkd the
branch number of the tree. L&f denotes the total number of
branches. To manage the tree’s growth, the maximum length
each branch will be set td where A << N. The value ofA
is database dependent, and should be large enough to cay

Initialize: create first branch’s noo‘é/1 for input u;
Peryy k=1,i=1, h=1
0o 2 CreateWK Wlth Vh — uy, ff — 1, \I!{f — {i}, ozlf =1.
3) setl « {W}f{ } /I Active branches
4) set2 — {}
Fori=2:N
{modified nodel = froot(WQ, u;)
Bd  set2 = {modified node
e For each nodéV} € setl
o {modified node} = firanch(
o set2 — set2U {modified nod
End
setl «— set2
set2 — {}
LiErel

wk

b

u;)

of

897



Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009

thecriterionis that the input vecton;’s similarity to all current  To verify if u; can be inserted into the!” branch of the
depth 1 nodedV{'s template vectow} is less than a usertree, 3}, is compared to threshold} .. If 3;,, is greater
defined thresholdy,. If this condition is satisfied, a new nodethan a’,jH, the input vector time stamp informatiarwill be
will be created and this node is returned by the function. included by ¥ ., and the functionfy,qncs (W), u;) returns

In our work, the Pearson correlation coefficient [39] is useitie nodeW[fH, otherwise null.
to measure the similarity between two vectors. Specifically, theln our system, each’ 41 Is adaptive so that the sequence
Pearson correlation between two vectorsind v is defined being analyzed can influence the threshold value. This makes

as } the insertion process more robust as opposed to having a single
_u _T ; k
p(u,v) = Yoo (u, —a)(v, — ) B fixed threshold. They; is updated by
d — d _
VI (w2 S (v, - )2 oy = af — (5 — ). (4)

whereu,, v, arethe r* elementof u andv respectivelyd whereh > 1, and 3§ = jf. The adaptive threshold? , ,
is the dimensionality of the vectors, amdv arethe mean of has the following behaviorsy) , decreases when the past
vectoru andv. segment similaritysy is better than its predecessor, acmfgiH

H2: To verify if the current input vecton, can be inserted increases whep! is poorer than its predecessor. The adaptive
into the k*" branch of the tree, we evaluat¥ the similarity threshold is modified thus so that sequences with intermittent
betweenu; to the k*" branch first template vector, poor segment similarity will be retained if past segment

. L similarity has been good.
By = p(vi,u;)

) . B. The AMG Parameter Settings
If 5¥ is greater than the node’s threshelfl, the corresponding o ) i
node’s ¥ is updated to include the time stampThe set of ~ 1he motif discovery process of the AMG algorithm is
modified nodes will be returned by the function and thogePntrolled by the following four parameters, named, A,
nodes will become the “active” nodes that must be verifigdt @1d 72. The purposes of these parameters are discussed
for the next input vector. below:

2) Insertion at branch nOde:fbmnch(W;f,ui)i Before 1) The parameter specifies the maximum depth of the
we discuss the details Ofbmnch(W;’f,ui), we first dis- tree and its value should be set to a length that can
cuss the nodes belonging t@tl that is used to evaluate capture a meaningful portion of the motif. The value of
fbmnch,(W;’f,ui)- The nodesW;’f in setl are the “active” A is however not critical as the refinement step of our
nodes, i.e., the sequence of template vectors at these active Proposed system has the ability to merge neighboring
nodes’ branch from depth dof ... has matched the recent motifs.
input vector sequence;_j ...u;_;. For the current input 2) The parameteh specifies the length of the segment to

vector u;, the function fu,anen (W7, u;) verifies if this new
input vector should be appended to the active branches.
The function fbmnch(W,’j,ui) evaluatesu; for non-root

evaluate the similarity measure as specified in Eq. 3. As
in the selection of parametet, the value of\ should
be chosen long enough to capture a motifs sequence.

A larger value of\ will smooth the segment similarity
measure more significantly.

3) The thresholdy; is used to initializeaX. As of is
the first node’s threshold at tHé" candidate motif, its
setting is important since it determines if each new input
vector will be inserted into the branch. An unreasonably
high setting will stop a true repeating sequence from
being inserted, while an unreasonably low setting will
generate too many false alarms. Hence, the valug, of
is critical to the success of AMG. In our experiments,
we select a small development corpus from the same test
domain. We then evaluate all pairwise similarity between

node W}, i.e. h > 0 to determine if

« H3: u; can be used to create a new child nddi#, ,,
o H4: u; can be inserted into the existing child noﬂéf+1.

The function will examine either hypothesisl or H4) and
return only one or no modified node.

H3: If W} has no child node and < A, a new child
node W}, , will be created and returned by the function.
By growing the branch with a new child, we can view the
operation as extending the current candidate motif by 1 vector.

H4: If W} has a child node, we will verify if the current
input vectoru; can be inserted into the existirig” branch
of the tree. Different toH2’s Eq. 2 which evaluates only the vectors and select the tdp*" percentile pairwise
the similarity between the current input vector to one node’s  gjmjlarity value asy;.
template vector, we_extend Eg. 2 to measure the similarity4) The thresholdy, is used in the evaluation of hypothesis
between the current input vector sequenc#p , . ,, motif. H1. The value determines whether a new branch should
Specifically, we evaluate the segment similarity by be created for the input vector. The suitable value for

me(mq) (v W) Y2 is 11 < 72 < 1. A higher~; value will allow more
Bl === PVhi1—ry Wiz () branches to be created. In our experimental wqgkis
min(h, A —1) set to the togs'" percentile pairwise similarity value of

where ) is the user defined segment length. the development set (as discussed in Step (3)).
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C. Discussion:AMG vs. Ukkonen’s Suffix Tree Construction Cﬂultivariate ) o] e ,( Candidate Mouf)
Time Series Matrix

The insertion criteria of Ukkonen’s algorithm for symbolic
suffix tree are based on exact match evaluation which com- L
pares the input symbol to the node’s template. In contrast, the Tf;’n";ﬁ’;‘i&;‘ﬁx
insertion criteria for AMG are not as straight forward since the
input are vectors - this implies that the similarity comparison p LT
Pattern Merging

must use threshold for the decision process. However, a simple
pairwise similarity evaluation of current input vector to the

Blur all the lines

node’s template vector cannot reflect the global correlation Rotanthe Tocal
of two sequences and hence is not robust. To overcome _ longest lines
. . Refinement

this shortcoming, the AMG employs a segment-to-segment Process T
similarity measure with an adaptive threshold to evaluate if 1

the current vector should be inserted into the tree. Hence,
the insertion process can tolerate intermittent poor pairwise T:
similarities measured with candidate motifs. Finally, the AMG

.

is also different to the general suffix tree construction as T
we restrict each non-root node to have only one child. This
restricts the tree’s growth and allows for a practical realization.
Our experimental results show that this realization did not

cause serious degradation in repeating segments detectiorﬁlig- 3‘_-hThe proposed process to refine the candidate motifs obtained by AMG
algorithm.

IV. CANDIDATE REPEATING SEGMENTSREFINEMENT

In Figure 2, eagh branch. of the AMG generated' SIUCtU®  ~. 1 didate Motif Matrix Generation
represents a candidate motif. These candidate motifs must be ) . . .
further processed to extract true repeating patterns becausér:he canc_ildate motifs can be easily retrieved from the
(i) the candidate motifs will often contain redundant patterrructure (Flgulge 2) constructed by AMG by detectingthe
such as trivial matches; (ii) the candidate motifs can be merg\%%t of nodesg¥;;’ which satisfy the following conditions:
to form longer patterns, (iii) the AMG algorithm may miss h >\ 5)
detecting true motifs, and (iv) we need to align the boundaries

k
of the found motifs. Wyl > 1, (6)
To address the above four issues, a direct approach is to I‘IJ'Z\ #* I\I’EH\, (7)
capture the candidate motifs’ occurrences in a spafse N where 4 |" indicates the number of elements in the set. Eq. 5

matrix whereN is the number of vectors in the input sequence,

and then refine the_ obtalned pattern_s to gen_erate t_he f farantees that the captured candidate motifs have occurred at
selection. We call this matrix the candidate motif matrix, an

. . L ast twice, Eq. 7 is used to choose the set of detected patterns
the elements of this matrix whose values are ‘1’ indicate th

f . The i ! : Hﬁth the longest length.
occurrence of a repeating segment. The interpretation of thisrpage getected patterns are used to populate the candi-

matrix is similar to the binarized self-similarity matrix usec!jate motif matrix by assigning ‘1’ to the positions where

for motif discovery [9]. Hence, existing techniques such as [§he atterns occur, specifically, the repeating patterns are at

[9] to refine the similarity matrix and pattern merging can b@oordinates(\l/k (). f5) of Wk where W* ¢ Q. and

applied. In addition, missing motifs can also be immediately (j) are themelerhenrlns abk m=1.h h '

identified from this matrix (see Section IV-C). _ _ For the convenience of processing, the candidate motif
Different from [8], [9], our proposed candidate motif matrixy iy is then converted to a time-lag matfi [9]. By this

generated by the AMG is immediately a spaféec N malrix — onyersion, the repeating patterns will be reflected as parallel

as opposed to the conventional method to generate the/full o ica| lines inT and redundant neighboring patterns can be
N self-similarity matrix. Our experimental results (Section V)easily detected and removed.

show that the occupancy of the candidate motif matrix is onl )

about1% of the full matrix and the memory usage to construd¢- Pattern Merging

the AMG structure iD(AK). During the construction of the AMG structure, the algorithm
Figure 3 illustrates our proposed refinement framework. Théll record every possible candidate motif. Hence, many

candidate motifs generated by AMG is first used to popmeighboring candidates will be generated. These neighboring

late the sparse candidate matrix. This matrix is subsequentiptifs should be merged to find longer repeating patterns. To

converted to a time-lag matrix similar to [8], [9] for the re-merge these neighboring motifs, each vertical line in the time

finement process such as: pattern merging, pattern duplicatiag matrix is first dilated and then eroded to form a new sparse

and boundary refinement. The details of the procedure amatrix T;. The objective is to extract the longest vertical line

described in the following sub-sections. for each neighborhood.

i:ricts the length of candidate motifs to be at legsEq. 6
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C. Pattern Duplication sparse similarity matrix versus a full similarity matrix. Our test
If the input sequence is noisy, the AMG algorithm magOrpus consists of 30 pieces of English pop songs performed
not be able to capture every repeating pattern of a candidfe Poth male and female singers. From the test corpus,
motif. However, the repetition occurrence in the candidaf3 repeating segments with an average duration 25.6sec are
motif matrix can be further analyzed to sought out mssm'&em'f'ed There are a total of 198 instants for these repeating
repeating pairs. To describe what we mean, we describe &ggments. These instants are used as our ground truth patterns.
following scenario: if segment9;, Q, andQ; are sequences 10 carry out the experiment, the test corpus is first down-
of the same motif, but due to noise, the sequer@@s, Q-} sampled to 11KHz, mono and 16 bits per sample for feature
were found under one candidate motif selection, while tiextraction. The feature used is derived from the 12 dimensional
sequences$Q,, Q3} were found in a separate motif selectionchroma vector [7] which is calculated from every 250msec mu-
Let §;, denote the frame index differences between patte$it segment with 50msec hop size. The spectrum information
{Q,,Qx}. Due to the characteristics of the time-lag matrixn seven musical octaves that span from 32.5Hz to 4KHz is
the patterr, will be marked in two locations, one is a verticalised. Each extracted chroma vector is normalized by dividing
line that is parallel taQ; with a distance o, along thexz- €ach element by the vector's maximum value.
axis, and the other vertical line is along theaxis with a  As the chroma feature captures information in a 250msec
distance of als@d, to Q;(see Figure 4). window, slight offset of the analysis window may affect
the feature values. As such, researchers [9] have proposed
Voctor I eronce to generate features from a much longer analysis window.
st Following their strategy, our used feature is the mean and
T 513 - -’ variance of 16 consecutive chroma features with a hop size of
orssetf ’ " 3 frames. This translates to an analysis window of 1 second
B ' and a shift of 150msec to generate a feature vector of 24

<5 N dimensions

This experiment compares the performance of our proposed
AMG to the traditional self-similarity approach [9] to search
- - for repeating segments. Both approaches will generate the
. time-lag matrix using the same features and are post-processed
Ve by the same refinement framework as described in Section IV.
e The parameter settings used for the AMG approach are:
e maximum depth of the treel = 100 (this setting allows
v 4 us to capture 16sec music segment), the segment length
Fig. 4. The illustration of the repetition occurrence and pattern dupllcatlo%\ 61 (approximates 10sec duration). The thresholds
process in the time-lag matrix. and~, are selected using an independent development corpus

of 20 English songs, and they were set as 0.367 and 0.684
In this situation, we can infer from the time-lag matrix thatespectively.

@3 should also be included i®;’s set [9]. To exploit this
relationship, our refinement process will duplicate all vertica gyajuation Criteria
lines in Ty to all possible candidate positions belonging to

the same family hence to form a new matilis. The process  To evaluate the performance of the two approaches, repeat-
is illustrated in Figure 4. ing segments il generated from Section IV are compared

' with the ground truth patterns. L€ denote the ground truth

D. Boundary Refinement patterns in a sparse binarised time-lag matrix for each song.
Noise may also cause mis-alignments in the boundaries1He vertical lines in matrixG are then duplicated as described

the obtained candidate motifs. The boundaries can be allgl’pgﬂ Section IV. To achieve a robust and stable eva|uati0n,

by either eXtending or Shrinking the detected patterns. Taej:lsec window mismatch among repeating Segments is

details of the boundary alignment process can be found in [@ljowed. This is achieved by blurring all the lines @ to

Therefore, a new matrixI” can be obtained by aligning form a new matrixG’ for the -1sec offset error. Therefore, the

the boundaries ifl';. After the refinement process, the finakorrectly detected repeating segments can be found in matrix
motifs can be easily retrieved from matrik’. T by
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V. EXPERIMENTS AND DISCUSSION T=T NG, (8)

Using a corpus of 30 songs we compare the recall and
precision of repetitions obtained using the AMG constructathere “\” denotes the element-wise logical “AND” operator.

In this paper the recall is defined % andthe precision

1The 30 songs’ feature database as well as their re;
peating segments location information are released \T'\ !
http://iwww3.ntu.edu.sg/home/aseschng/SpeechTechWeb/projects/projects @t@iments in the matrix.

" denotes number of non-zero
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Fl-Measure Comparison
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Fig. 5. The F1-measure for each individual song using the self-similarity matrix approach and our proposed AMG approach.
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Fig. 6. The above figure compares the memory usage requirement between the AMG and self-similarity approach for each individual song. The averag

memory requirement of AMG is approximatel of that required by the self-similarity approach. The ralig N is also plotted to illustrate the number
of branches created for each song.
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Fig. 7. The above figure compares the computational requirements between the AMG and self-similarity approach for each individual song.

. TABLE I

B. Evaluation Results AVERAGE PERFORMANCE COMPARISON BETWEEN THAMG AND
The F1 measure for each individual song is shown in SELF-SIMILARITY APPROACH FOR30 SONGS

Figure 5. The average recall, precision and F1-measure of all Recall | Precision | FE1

the testing songs are shown in Table II. AMG 0.590 | 0.560 | 0.575

As the self-similarity approach calculates the similarity Self-Similarity | 0.569 | 0.558 | 0.564
measure between all pairwise vectors, the matrix will contain
all similarity information in the sequence for motif detection.
Therefore, the ability to extract and find correct motifs reliesxperimentmeasures how well the AMG approach can capture
on the pattern refinement process. Since the refinement prodbss“correct” candidate motifs. Our results in Figure 5 and
and features used are the same for the two approaches, Taisle 1l show that the two approaches have almost the same
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