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Abstract—This paper considers a single channel speech en-
hancement algorithm, which is based on our previous work on β-
order minimum mean square error (MMSE) spectral estimation.
We propose to make β a function of both local and frame
signal-to-noise ratios (SNRs) in order to achieve more effective
preservation of weak speech components. Moreover, by taking
into account the speech-presence uncertainty in the adaptive β-
order MMSE algorithm, we achieve a significant noise reduction
and an improved spectral estimation of weak speech components.
Experiments also show that the proposed estimator outperforms
other well known speech enhancement algorithms.

I. INTRODUCTION

For single microphone speech enhancement using spectral
domain, many approaches, including Wiener filtering, spectral
subtraction, maximum-likelihood noise attenuation, masking
properties based over-subtraction method, the Ephraim-Malah
(E-M) MMSE [1] and Log-Spectral Amplitude (LSA) [2]
methods, as well as uncertainty of speech-presence [3], have
been reported.

In [4], the elimination of musical noise phenomenon with
the E-M suppression method is analyzed; it proves that the
E-M noise suppressor is effective if a nonlinear smoothing
procedure is used to obtain more consistent estimates of the
a priori and a posteriori SNRs which are used to control the
attenuation function. The advantage of the E-M noise suppres-
sion method is obtained from the non-linearity of the averaging
procedure and the decision-directed a priori SNR estimation.
When the speech level is well above the noise level, the a
priori SNR estimation equation involves a mere one-frame
delay, and the estimate is no longer a smoothed SNR estimate,
which is important in the case of non-stationary signal [4];
when the speech signal level is close to or below the noise
level, the a priori SNR estimation equation has a smoothing
property and the musical tone phenomenon is greatly reduced.
In [5], an improved estimation is proposed over the decision-
directed estimation by introducing a recursive method based on
the assumption of statistical independence of not only spectral
components but also time-domain components.

In this paper, based on the adaptive β-order MMSE method
[6], we propose an improved method by considering the local
factor to the process of estimation, which would preserve
weak spectral components. Furthermore, speech-presence un-
certainty is considered for the reduction of noise. Comparing
with the masking-based β-order MMSE method [7] which

preserves the weak spectral components by not suppressing
the inaudible noise, we emphasize the local SNR information
to preserve the weak detectable components, and use speech-
presence probability to achieve a sufficient suppression of
noise. This paper is aimed to reduce the additive noise on
the frequency domain so that the time-domain speech signal
can be enhanced for the human listening. Recently, MMSE
has also been applied for the feature enhancement in cepstral
domain [8]. However, the speech signal after feature enhance-
ment processing can not return back to the time-domain speech
signal for human listening. As a result, it only benefits the
machine recognition.

II. AN IMPROVED ADAPTIVE β-ORDER MMSE

A. β-Order MMSE Short-Time Spectral Suppression

An observed noisy speech signal x(t) is assumed to be a
clean speech signal s(t) degraded by uncorrelated additive
noise n(t), i.e.,

x(t) = s(t) + n(t), 0 ≤ t ≤ T. (1)

Let Sk = Akejαk , Nk and Xk = Rkejϑk denote the kth
spectral component of the clean speech signal s(t), noise n(t)
and the observed noisy speech x(t), respectively. We have the
β-order MMSE suppression gain function as follows [6]

Gβ(ξk, γk) =
√

υk

γk
[Γ(β/2 + 1)M(−β/2; 1;−υk)]1/β (2)

where β is the order of the spectral amplitude of the signal
while the MMSE criterion is used, Γ(.) is the gamma function
and M (α; γ; z) is the confluent hypergeometric function. υk

is defined by

υk =
ξk

1 + ξk
γk (3)

where ξk and γk represent the a priori SNR and a posteriori
SNR respectively. Let ηn(k) = E{|Nk|2}, and ηs(k) =
E{|Sk|2} denote the variances of the kth spectral components
of noise and speech signal respectively, we have

ξk =
ηs(k)
ηn(k)

, γk =
R2

k

ηn(k)
. (4)
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The a priori SNR, ξk, is estimated by a causal recursive
estimation proposed in [5] as follows

ξ̂k(l/l) =
ξ̂k(l/l − 1)

1 + ξ̂k(l/l − 1)
(1 +

ξ̂k(l/l − 1)

1 + ξ̂k(l/l − 1)
γk), (5)

ξ̂k(l/l − 1) = max
{

(1− α)ξ̂k(l − 1/l − 1)

+ α
Âk(l − 1)2

ηn(k, l − 1)
, ξmin

}
,

(6)

where l is the time frame index, and parameters ξmin = -25
dB, and α = 0.9.

B. Proposed Adaptive β Value

It is noted that the suppression gain function (Eq. (2))
is obtained based on the assumption that speech and noise
spectral components are statistically independent of each other.
In other words, the estimate of a speech spectral amplitude of
a certain frequency bin is only determined by the a priori and
a posteriori SNRs of that frequency bin, and is independent
of the SNRs of the other frequency bins. However, it is well-
known that a speech signal is not a chaotic signal and the
statistical independence assumption is not sufficiently satisfied
in practice. Based on the above analysis, we can make β
a function of frame-SNR Ξ(l) and local-SNR Λ(l, k), i.e.,
β(l, k) = F

(
Ξ(l), Λ(l, k)

)
. The frame-SNR and local-SNR

of the current frame l are defined respectively by

Ξ(l) = 10 log10

∑N/2
k=0 ψ(l, k)2

∑N/2
k=0 ηn(l, k)

(7)

Λ(l, k) = 10 log10

∑b
i=−b

∑d
j=−a w(i, j)ψ(l − j, k − i)2

∑b
i=−b

∑d
j=−a w(i, j)ηn(l − j, k − i)

(8)
where w is a time-frequency window with size (2b+1)×(a+
d + 1), d and a denote the numbers of time-domain past and
future samples used for smoothing for frequency bin k at time
l, and ψ(l, k) is defined as follows

ψ(l, k) = max[Rk(l)−
√

ηn(l, k), ε]. (9)

In our study, b = 1, a = 1, d = 2 and the matrix w is given by

w =




0.35 0.5 0.7 0.5
0.50 0.8 1.0 0.8
0.35 0.5 0.7 0.5


 . (10)

We may express the β value as a function of the two variables
in polynomial form, i.e.,

β(l, k) = F
(
Ξ(l),Λ(l, k)

)
=

∞∑

i=0

∞∑

j=0

cijΞ(l)iΛ(l, k)j

= τ0 + τ1Ξ(l) + τ2Λ(l, k) + τ3Ξ(l)Λ(l, k) + Φ(Oh).
(11)

By ignoring the high-order polynomial terms Φ(Oh), and
making β a monotonically non-decreasing function of Ξ(l) and

Λ(l, k), we can express β(l, k) approximately in the following
form

β(l, k) ∼= τ0 + τ1Ξ(l) + τ2Λ(l, k)
+ τ3 max[Ξ(l) + τ4, 0]max[Λ(l, k) + τ5, 0]

(12)

where cij and τi (i, j = 0, 1, 2, ...,∞) denote the polynomial
coefficients.

From Eq. (2), we can see that the gain increases as the value
of β increases, and the smaller the value of the instantaneous
SNR (γk−1) is, the bigger the increment of gain (in dB) will
be as β increases. This particular property of gain is useful
to bring about the retrieval of speech for the weak speech
spectral components. For a low value of β used on a frame of
noisy speech samples, the strong speech spectral components
can be appropriately enhanced but the weak speech spectral
components may disappear. When the value of β is high, the
strong speech spectral components remain at almost the same
enhancement level as in the case of low β value because the
gain always converges to the Wiener gain value when the
instantaneous SNR is big enough. However, the weak spectral
components (i.e. low instantaneous SNR, (γk−1)) which exist
in the same frame as strong spectral components of speech
signal may be appropriately enhanced because the gain has a
big value for the low instantaneous SNR spectral components
with high β value.

It is expected that β will increase as Ξ(l) increases and
vice versa. From Eq. (12), we can see that the parameters
τi, i = 0, 1, ..., 5 are very important to the speech enhancement
system. Therefore, the process of obtaining the parameters is a
key issue in our adapted β-order design. Actually, τ0 is a floor
used in determining the total level of β value, and τ1 and τ2

is used to determine the level of influence the frame and local
SNRs have on the suppression gain value respectively. τ3 is
used to constrain the overall effect of frame and local SNRs on
the β value. τ4 and τ5 are to set a lower bound contributions
to the gain function from frame and local SNRs. Through a
large number of computer simulation using real speech data,
the τi (i = 0, 1, 2, ...) parameters are appropriately adjusted
and the concrete β function is given as follows

β(l, k) =



0.01max[Ξ(l) + 15, 0]max[Λ(l, k) + 1, 0] + 0.53Ξ(l)
+ 0.2Λ(l, k) + 2.95, if Ξ(l) > -5 (dB)

0.01max[Ξ(l) + 15, 0]max[Λ(l, k) + 1, 0] + 0.53Ξ(l)
+ 0.3max[Λ(l, k) + 5, 0] + 2.95, otherwise.

(13)

To emphasize the dynamic range of the β value, we express
the final form of β as follows

β̂(l, k) = min
{

max{β(l, k), τ6}, τ7

}
(14)

where τ6 = 0 and τ7 = 4 are used in our simulation experi-
ments.
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C. Incorporating Speech-Presence Uncertainty

1) Gain: In this paper, we further consider the effect of the
speech-presence uncertainty to the adaptive β-order MMSE.
Let H0 and H1 represent speech-absence and speech-presence
respectively in a binary hypothesis model. The probability
density functions (pdfs) of Xk(l) with Gaussian distribution
during speech-absence and speech-presence are respectively
given by

p(Xk(l)|H0(k, l)) =
1

πηn(k, l)
exp

[− |Xk(l)|2
ηn(k, l)

]
(15)

and

p(Xk(l)|H1(k, l))

=
1

π(ηn(k, l) + ηs(k, l))
exp

[− |Xk(l)|2
ηn(k, l) + ηs(k, l)

]
.

(16)

Based on the Bayes’ theorem, we obtain the following equa-
tion

p(H1(k, l)|Xk(l))p(Xk(l))
p(H0(k, l)|Xk(l))p(Xk(l))

=
p(Xk(l)|H1(k, l))p(H1(k, l))
p(Xk(l)|H0(k, l))p(H0(k, l))

.

(17)

Since p(H1(k, l)|Xk(l)) + p(H0(k, l)|Xk(l)) = 1, we have

p(H1(k, l)|Xk(l)) =
1

1 + p(Xk(l)|H0(k,l))p(H0(k,l))
p(Xk(l)|H1(k,l))p(H1(k,l))

=
1− qk(l)

1− qk(l) + qk(l)(1 + ξk)exp(−υk)

(18)

where qk(l) = p(H0(k, l)) and p(H1(k, l)) = 1 − qk(l). The
estimate of speech amplitude is then given by

Âβ
k =E{Aβ

k |Xk(l),H1(k, l)}p(H1(k, l)|Xk)

+ E{Aβ
k |Xk(l),H0(k, l)}p(H0(k, l)|Xk).

(19)

Generally, as illustrated in [1], the second term is 0 and so the
estimate of speech amplitude can be obtained by

Âk = Gβ(ξk, γk)p(H1(k, l)|Xk)1/βRk. (20)

The gain function with the factor of uncertainty of speech-
presence is obtained by

GM (ξk,γk, β) = Gβ(ξk, γk)p(H1(k, l)|Xk)1/β

=
√

υk

γk

[
Γ(β/2 + 1)M(−β/2; 1;−υk)

× 1− qk(l)
1− qk(l) + qk(l)(1 + ξk)exp(−υk)

]1/β
.

(21)

Consequently, the estimate of a speech spectral component is
expressed as

Ŝk = GM (ξk, γk, β)Xk. (22)

2) Estimation of Speech Absence Probability: In [1], qk(l)
could be fixed to a value of 0.2. If a more accurate estimate
of the time-varying value of qk(l) is used, the estimate of the
speech signal will be closer to its original value. Hence, we
adopt the following method to estimate qk(l)

p0(k, l) = (1− αp)p0(k, l − 1) + αpΩ(k, l) (23)

Ω(k, l) =





0, if ρcur(k, l) > ~p

1, if ρcur(k, l) ≤ ~p

(24)

qk(l) = 0.15 + 0.15p0(k, l) (25)

where the current-SNR, ρcur(k, l), is defined as

ρcur(k, l) = 10 log10

{max[Rk(l)−
√

ηn(k, l), ε]}2
ηn(k, l)

.

(26)

Usually, αp = 0.85 and ~p = 2 ∼ 6 (dB) are suggested; ε is
a very small positive number, e.g., ε = 2.22× 10−16.

III. PERFORMANCE EVALUATION

The performance evaluation is based on spectrogram analy-
sis, segmental SNR measure, and listening tests. Five different
noise types, taken from the NOISEX-92 database, are used.
They are white Gaussian noise, Babble noise, interior Volvo
car noise, Leopard noise and F16 cockpit noise. 30 utterances
from the TIMIT database and 20 utterances from a Mandarin
speech database are used in the simulation. Half of the utter-
ances are male and the other half are female. The effectiveness
of the proposed enhancement algorithm is evaluated for the 8
kHz sampling rate with the frame size of 256 samples, which
are Hamming windowed with 75% overlap.

Fig. 1 shows the recovered spectral components, which are
corrupted by F16 noise, obtained by the proposed speech
enhancement methods in comparison with other estimators.

Fig. 2 shows the segmental SNR improvement performances
of the different speech estimation algorithms which include
MMSE [1], LSA [2], OM-LSA [3], conventional adaptive
β-order method [6], and the proposed method. From these
figures, we can see that the proposed method always outper-
forms the other methods in terms of average segmental SNR
improvement for the case of white noise. Its performance is
even more impressive for car interior noise. Listening tests
also confirm the advantages of our adaptive β-order method
based on uncertainty of speech-presence.

IV. CONCLUSION

In this paper, a new adaptive β-order MMSE algorithm
is proposed. The new algorithm demonstrates a considerable
improvement over the conventional adaptive β-order MMSE
algorithm. A significant improvement is also achieved when
the algorithm incorporates speech presence uncertainty. The
paper shows, through computer simulations, that the proposed
method outperforms many conventional methods and has the
potential of minimizing both speech distortion and residual
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Fig. 1. Speech spectrograms: (a) Clean speech (8kHz sampling rate) (b) Noisy
speech (F16 noise) with segSNR = -7.91 dB (c) LSA estimated speech signal
(segSNR = 1.60 dB) (d) Proposed adaptive β-order with speech-presence
uncertainty estimated speech signal (segSNR = 5.81 dB).
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Fig. 2. Performance of the different speech estimation algorithms at 8kHz
sampling rate; MMSE (♦), LSA (o), OM-LSA (+), conventional adaptive
β-order (4), proposed adaptive β-order (x) and proposed speech-presence
uncertainty based adaptive β-order (*). It shows the average segmental SNR
improvement for White Gaussian noise.

noise. In particular, the enhancement effect is more significant
for the case of weak spectral components of a speech signal
corrupted by noise.
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