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Abstract—In this paper, we propose a novel audio fingerprint-
ing technique based on subband envelop hashing (SEH). In this
approach, the discrete cosine transform (DCT) is applied to each
subband of the perceptual spectrogram, and the lower-ordered
DCT coefficients representing the subband envelopes are retained
to generate multiple hash values. The corresponding database
matching algorithm is also extended which allows for an efficient
search in the database given a short query audio clip. The
algorithm is implemented and compared with the Philips Robust
Hash (PRH) algorithm proposed in [1], and experimental results
show that the SEH algorithm achieves a significant improvement
over the baseline system under various distortions.

I. INTRODUCTION

An audio fingerprint is a short summary of the content of an
audio signal. The objective of an audio fingerprinting system
is to identify short, unlabeled audio clips in an efficient and
reliable way regardless of the audio format. The system con-
sists of two fundamental processes: the fingerprint extraction
stage and the database matching stage, as illustrated in Fig. 1.
Given an unknown audio excerpt, the fingerprints are extracted
and compared with the items in the database, and the metadata
will be returned if the corresponding fingerprints are found in
the database. The main difficulty in designing such a system
comes from the high dimensionality, the significant variance
of the audio data for perceptually similar content and the
necessity to efficiently find the fingerprint in a huge collection
of registered fingerprints [2]. The application scenarios include
broadcast monitoring, connected audio, filtering technology
for file sharing and automatic music library organization [1].
The application potential has boosted the interest from many
researchers, and has given rise to a number of practical
algorithms.

A review of audio fingerprinting is given in [2], in which
the properties of a desired audio fingerprinting system were
discussed and some practical algorithms were introduced.
Among the various fingerprinting schemes, the Philips Robust
Hash (PRH) algorithm [1] was claimed to be highly robust
to degradations and theoretical framework that analyzed its
robustness has been given in [3] and [4]. Due to the ro-
bustness and efficiency, the PRH algorithm has been used as
the baseline system for evaluating several recently developed
algorithms: the authors of [5] viewed the temporal-frequency
differentiation of spectrogram as a filtering output, and they
tried to improve the performance by using alternative fre-
quency filters. However, the filters used are empirical and not

Fig. 1. Framework of an audio fingerprinting system

founded on a theoretical basis. On the other hand, the authors
of [6] treated the spectrogram as a 2-D image and transformed
the music identification into a corrupted sub-image retrieval
problem. The approach was further improved by [7] and [8]
who utilized wavelets which is commonly used in the area of
image processing. Although the spectrogram and a 2-D image
do share something in common, they differ significantly in
such a way that the spectrogram has a much larger correlation
along the temporal axis than along the frequency axis, while
a 2-D image typically have similar correlations along both x-
axis and y-axis.

In this paper, we propose a novel audio fingerprinting
scheme that generates multiple hash codes for each frame,
and the corresponding database searching algorithm is also
extended. Specifically, the discrete cosine transform (DCT) is
applied to the temporal sequence of energies to extract the
envelops of each subband, and the hash codes are computed
from the low-ordered DCT coefficients. Experimental results
have shown that the proposed approach outperforms the PRH
algorithm under various environments.

II. SCHEME OF THE BASELINE SYSTEM

As the baseline system, the block diagram of the fingerprint
extraction stage of the PRH algorithm is illustrated in Fig. 2.
Specifically, the audio signal is first divided into overlapping
frames with the length of about 370 ms, and the frame shift
is 1/32 of the frame length. The large overlap of the frames
assures that the hash values possess a large correlation along
the time-axis so as to be robust against shifting. Second,
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Fig. 2. Fingerprint extraction stage of the PRH algorithm

the power spectrum is obtained by performing FFT. Third,
the energies for 33 non-overlapping logarithmically spaced
subbands (e.g. Bark Scale) covering the frequency range of
300 Hz to 2000 Hz are calculated. The band division process
reflects the perceptual characteristics of an audio signal. Fi-
nally, the obtained spectrogram is passed through a temporal
filter HT (z) and a frequency filter HF (z) which can be shown
as:

HF (z) = HT (z) = 1− z−1, (1)

and the output is represented as:

ED(n,m) = E(n,m)− E(n, m + 1)
− (E(n− 1,m)− E(n− 1,m + 1)), (2)

where E(n,m) denotes the m-th subband energy of n-th
frame, and ED(n,m) is the output of the filters that represents
the difference between energies from successive frames and
neighboring frequency bands. Finally a 32-bit hash value
for each frame (which is referred to as a subfingerprint) is
obtained by a threshold process:

F (n) = [F (n, 0), · · · , F (n, 31)], (3)

F (n,m) =
{

1, ED(n, m) > 0
0, ED(n, m) ≤ 0,

(4)

where F (n) is the subfingerprint of frame n and F (n,m) is
the m-th bit of it.

The extracted hash values can be highly unique and thus
enable an efficient database matching algorithm illustrated in
Fig. 3. In the offline processing of the audio files stored in
the database, all the subfingerprints computed are registered
in a hash table with the subfingerprints being treated as the
keys. Each entry of the hash table stores a list of pointers
to the positions in the audio files where the subfingerprint
occurs. In the stage of database matching, 256 subfingerprints
which amount to approximately 3 seconds are extracted from
the query audio, and each subfingerprint is matched with the
hash table contents to find the candidate positions where it
may come from. A fingerprint block with the same size as
the query block (256 × 32 = 8192 bits) from the candidate
position is obtained, the bit error rate (BER) between the two
blocks is computed and compared with a threshold which is
set to 0.35 in [1]. If the BER is less than the threshold, the
two signals are considered similar and the candidate audio is
declared as the result.

Fig. 3. Database matching stage of the PRH algorithm

III. SUBBAND ENVELOP HASHING ALGORITHM

The PRH algorithm is based on the sign of the temporal-
frequency differentiation of the subband energies in the
perceptual spectrogram. It is reasonable to summarize the
discriminative information in the spectrogram in that way.
However, for the temporal filter, it only makes use of the
neighboring two frames, and is vulnerable to the possible local
disturbances. The bits in subfingerprints can be flipped due to
the existence of local noise and mislead the database matching
algorithm. Moreover, the flips of bits in the fingerprints will
reduce the robustness of the algorithm. As a result, to enhance
the robustness of the algorithm both in the extracting phase
and the database matching phase, including more frames and
performing low-pass filtering to extract the subband envelops
will provide a good way to extract the stable information for
a robust discrimination by the frequency filter. The set of low-
pass filters are designed to be orthogonal to assure that the
features obtained can be more distinguished from each other
in the same frame.

In the proposed SEH algorithm, the temporal filters are
substituted into low-pass filters to extract the stable infor-
mation in each subband. Specifically, DCT is applied to the
temporal sequence of energies in each subband, and only
the low-frequency components of DCT are used as inputs
for the frequency filters. The low-frequency components of
DCT are the envelops in each subband, which represent the
stable information. The reasons for employing DCT as the
temporal filters lie as follows: First, among all the orthogonal
transforms, the decorrelation performance of DCT is closest
to the Karhunen-Loéve transform [9]. Second, DCT has a
strong energy compaction property [10] implying that most
of the signal energy tends to be concentrated in a few low-
frequency components. The decorrelation property ensures that
each subfingerprint can be treated separately and performance
improvement is possible via generating more subfingerprints.
The energy compaction property enables the reduction in the
number of subfingerprints, thus reduces the dimension of the
fingerprinting block. Since the subband energies are evolving
slowly, only a few DCT coefficients are sufficient to describe
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Fig. 4. Fingerprint extraction stage of the SEH algorithm

the subfingerprints.
The framework of fingerprint extraction stage in the SEH

system is depicted in Fig. 4. The first three parts, i.e.
framing, FFT and band energy calculation are the same as
those in the PRH algorithm. However, the temporal filter
in the PRH algorithm is substituted by DCT, i.e. L-point
DCT is performed on the L consecutive subband energies
E(n,m), E(n + 1,m), · · · , E(n + L − 1,m). Among the L
DCT coefficients, the lower-ordered K values are retained as
the input for the frequency filter. The obtained K coefficients
for each frame n and subband m are denoted by Ck(n,m),
k = 1, 2, · · · ,K. The DCT coefficients are then passed
through the same frequency filter as in the PRH algorithm,
and the output can be represented as:

EDk(n,m) = Ck(n,m)− Ck(n,m + 1), (5)

where EDk(n, m) represents the k-th output of subband m
in frame n. Let Fk(n) denote the k-th subfingerprint in frame
n. Then,

Fk(n) = [Fk(n, 0), · · · , Fk(n, 31)], (6)

in which

Fk(n,m) =
{

1, EDk(n, m) > 0
0, EDk(n, m) ≤ 0.

(7)

The database matching algorithm of the PRH algorithm is
also expanded for the SEH algorithm as depicted in Fig. 5.
In the offline processing of the audio files stored in the
database, all the subfingerprints computed are registered in
hash tables with the subfingerprints being treated as the keys.
Since K subfingerprints are computed for each frame in the
SEH algorithm, K hash tables are constructed, for example,
the subfingerprints obtained from the second DCT coefficients
in each frame are registered in the second hash table. The
database matching scheme consists of three steps: First, the
query audio is divided into 256 frames, and K subfingerprints
are obtained in each frame as in the fingerprint extraction
phase. Consequently, the query fingerprint block consists of
K×32×256 = K×8192 bits, and {Fk(n), n = 1, 2, · · · , 256}
forms the fingerprint block k. Second, the candidate posi-
tions are generated in each hash table separately, i.e. the
subfingerprints in fingerprint block k are matched with the
contents in the k-th hash table as in the PRH algorithm, and a
candidate list is created by accumulating all the search results
in all included hash tables. Finally, BERs are computed by
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Fig. 5. Database matching stage of the SEH algorithm

comparing the query fingerprint block with those stored at the
candidate positions in the database, and the candidate with
most number of hits and BER less than the specified threshold
is returned as the result.

IV. EXPERIMENTAL RESULTS

In implementing the system, the DCT length L was set to
be 16 to provide a good compromise between the frequency
and temporal resolutions. As for K, we used K = 4 since
more than 90% of the total energy was found to concentrate
on the first 4 coefficients from the experiment. The threshold
for BER was set to be 0.35 as in [1]. Finally, to speed up
the computation and further reduce the computation load, we
applied a running DCT algorithm [11] since computation of
DCT shifts one sample each time.

Several experiments were conducted to evaluate the
performance of the SEH algorithm. In the experiments,
a database consisting of 1500 music files extracted from
commercial compact discs is constructed. The genres include
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classical, pop and rock/roll, and the average audio length is 4
minutes. As for the test sets, 1200 query audio clips with the
length of about 3 seconds were randomly chosen from the
database. The following distortions were applied to the query
audio clips to compare the robustness of the two algorithms:

Set 1: Additive white noise with the SNR at 5db.
Set 2: Additive white noise with the SNR at 0db.
Set 3: Playing and recording in a very quiet environment.
Set 4: Playing and recording in office noise environment.

The hash tables used in SEH are denoted as HT1, HT2,
HT3 and HT4, and the only table used in PRH is denoted as
HT0. Here HTk was built from the k-th DCT coefficient; for
example, HT1 was constructed from the DC components. For
each query set, the SEH algorithm using various combinations
of hash tables were tested along with PRH. The recognition
rate (in percentage) for each algorithm is given in Table I.
Note that ‘HT’ of HTk is omitted in the table.

Since the temporal filter used in the PRH algorithm is a high
pass filter while in the SEH algorithm a set of low-pass filters
are used, it can be inferred that the hash values will reflect
more stable information in the temporal axis which would be
less influenced by the disturbances at the frame. As a result,
the results of the SEH for clips recorded in real noise which
was not stationary should display higher robustness and thus
better recognition rate compared to the PRH algorithm. It is
supported by the results in Table I. Although the results using
HT1 in SEH are compatible with the results from PRH for the
first three query sets, the result for set 4 is significantly higher
than that of PRH. Also note that the recognition rates increased
significantly as more hash tables are used in the experiment.
However, it is worth pointing out that,if more hash tables are
used, the memory usage and the computational burden also
increases. Thus it requires careful consideration how many
hash tables are needed according to the environment in which
the audio fingerprinting would be used.

V. CONCLUSIONS

In this paper, we present a novel audio fingerprinting
technique based on hashing of the subband envelops in the
spectrogram. The temporal filter in the PRH algorithm is
substituted by DCT, and multiple hash tables are built for
the corresponding lower-ordered DCT coefficients. Experi-
mental results have shown that the proposed SEH algorithm
outperformed the conventional PRH algorithm under various
conditions. Future work may include retaining the accuracy
of the SEH algorithm while using a reduced number of
subfingerprints and hash tables, and deriving a mathematical
framework for the performance of the SEH algorithm.

TABLE I
RECOGNITION RATES (%) OF THE PRH AND SEH ALGORITHMS WITH

DIFFERENT COMBINATIONS OF HASH TABLES

Algorithm Hash tables used Set 1 set 2 set 3 set 4
PRH 0 97.75 92.25 96.83 34.75

SEH

1 98.08 93.33 96.08 49.08
2 98.00 90.67 94.92 30.17
3 97.75 88.42 93.50 20.58
4 98.17 90.08 94.42 23.83

1,2 98.75 96.26 98.50 62.92
1,3 98.92 95.92 98.75 59.25
1,4 98.67 96.58 98.67 60.58
2,3 98.67 93.42 96.50 40.00
2,4 98.75 94.67 96.67 42.25
3,4 99.00 93.42 96.17 35.00

1,2,3 99.08 97.00 98.92 68.83
1,2,4 99.00 97.75 98.83 70.25
1,3,4 99.17 97.33 99.08 67.00
2,3,4 99.08 95.42 97.17 49.50

1,2,3,4 99.25 98.08 99.08 75.00
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