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Abstract – Most digital cameras perform color 
demosaicing and compression sequentially to yield a 
color output. Recent reports indicate that the alternative 
compression-then-demosaicing approach outperforms the 
demosaicing-then-compression approach in terms of 
image quality and complexity. This paper presents a fast 
reversible Bayer image compression algorithm for the 
alternative approach. A statistic-based prediction is 
proposed to de-correlate the wavelet subband coefficients. 
By learning from experiences, the proposed predictor can 
improve its prediction performance adaptively. A context-
based Golomb Rice code is then proposed to compress the 
subband residues. Simulation results show that, as 
compared with the existing lossless CFA image coding 
methods, the proposed algorithm can achieve a low bit-
rate with lesser computation. 

 

1. INTRODUCTION 

To reduce cost, most digital cameras acquire scenes 
using a single image sensor. In these cameras, a Bayer 
color filter array (CFA) [1], as shown in Fig. 1, is placed 
in front of the sensor such that the sensor samples only 
one of the three primary color components at each pixel. 
The mosaic-like CFA image, i.e. the raw sensor output, is 
first converted to a full color image, via color 
demosaicing [2-5], and then compressed for transmission 
or for storage. 

Recently, some reports [2,3] pointed out that such a 
demosaicing-then-compression approach is inefficient in a 
compression point of view as the demosaicing process 
introduces the redundancy which will be eventually 
removed in the later compression step. Accordingly, an 
alternative approach [2,4] which carries out compression 
prior to demosaicing has been proposed lately. 

Under this new workflow, a digital camera can have a 
higher quality color output and more power-efficient 
design as the critical yet computationally heavy 
processing steps like color demosaicing and post-
processing can be carried out offline in a powerful 
personal computer. These advantages motivate the 

demand of compression techniques for CFA images. 
Generally, CFA image compression can be either 

lossy or lossless. Lossy compression results in a 
decompressed output different from the original [2,4-6]. It 
is rarely used in practice as the demosaicing to be carried 
out in the future is very sensitive to the corruption 
introduced in the compression. Lossless compression, on 
the contrary, provides a decompressed output exactly the 
same as the original. It is commonly used for some high-
end photography applications like professional advertising 
where the original CFA image is required for producing 
the high quality full color image. 

Obviously, some lossless compression standards for 
grayscale images such as JPEG-LS [7] and JPEG 2000 [8] 
can be directly applied to compress CFA images. 
Nevertheless, they attain a fair compression performance 
only. Recently, two advanced lossless CFA image 
compression algorithms [9,10] were proposed. In [9] 
(LCMI), the Mallat packet transform is exploited to de-
correlate the mosaic color data. The transform coefficients 
are then compressed by adaptive Golomb Rice code. As 
for CMBC[10], it uses a context matching technique to 
rank the neighboring pixels for predicting a pixel. This 
method generally provides a better compression 
performance as compared with the existing lossless CFA 
image compression schemes. However, it demands a 
relatively high computational complexity. 

In [9], it is found that applying a simple one-level 
2D-wavelet transform to a mosaic CFA image is 
equivalent to separately transforming the full resolution 
green channel and the down sampled color difference 
images and then summing up the results. Based on this 

 
Fig. 1 – Bayer pattern having a center at red sampling position
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finding a fast reversible compression algorithm for CFA 
images is proposed in this paper. This algorithm uses a 
statistic-based prediction technique to de-correlate the 
subband coefficients. In particular, the statistics about the 
relative position between a given coefficient and its 
connected neighbor whose value is closest to that of the 
given coefficient is collected to adaptively improve the 
prediction performance. The prediction residues are then 
entropy coded with the proposed context-based Golomb 
Rice code. Simulation results show that the proposed 
compression method outperforms most lossless 
compression schemes and provides a good compression 
performance at a lower computation cost. 

This paper is organized as follows. In Section II, the 
statistic-based prediction for subband coefficients is 
presented. In Section III, the structure of the proposed 
compression algorithm is described. In Section IV, some 
simulation results are demonstrated. Finally, in Section V, 
a brief conclusion is provided. 

 

2. STATISTIC-BASED PREDICTION 

A one-level 2-D wavelet transform can convert the 
mosaic CFA data into four smooth subbands as shown in 
Fig. 2. Based on the property of each subband, a simple 
adaptive prediction technique is proposed in this section 
to de-correlate the subband coefficients. 

The proposed compression method separately handles 
the subbands in a raster scan order. Assume that we are 
now processing a particular coefficient denoted as c0 in a 
particular subband. The value of coefficient c0 can be 
predicted as 





4,3,2,1

0
ˆ

k
kk cwc  (1) 

where ck for k  = 1, 2, 3 and 4 are c0’s causal neighbors as 
shown in Fig. 3 and wk is the weight for ck. The weights 
are normalized such that 14321  wwww . 

We note that only coefficients ck for k = 1, 2, 3 and 4 
are considered for the prediction because they are the four 
causal coefficients closest to c0 in distance. These 
coefficients provide a higher correlation to c0 and are 

available when decoding c0. 
To compute the weight wk, the optimal neighbor of 

coefficient ck is determined first. The optimal neighbor of 
any particular coefficient p0 in the subband being 

processed, say *
0p , is defined as 

0
*
0 minarg ppp i

pi

   for i=1,2,3,4. (2) 

where pi for i=1,2,3,4 are p0’s neighbors in the causal 
template shown in Fig. 4a. When there are more than one 
optimal neighbors, one of them is randomly selected. 

The optimal neighbor of p0 can be p0‘s western, 
northwestern, northern or northeastern neighbor. The four 
directions are indexed as shown in Fig.4b. For reference, 
the direction from coefficient p0 to its optimal neighbor 

*
0p  is referred to as the optimal direction of p0 and its 

corresponding index value is denoted as 
0pd  hereafter.  

In the course of prediction, the optimal neighbors of 
all processed coefficients in the subband can be 
determined. Accordingly, when processing the current 
processing coefficient c0 shown in Fig.3, the weight for 
predicting the current processing coefficient c0 can be 
determined as 

),,,|(
43210 ccccck ddddkdProbw   for k=1,2,3,4 (3) 

where 
jcd  is the index value of the optimal direction of 

coefficient cj. ),,,|(
43210 ccccc ddddkdProb   is the 

probability that the optimal direction index of c0 is k under 
the condition that 

1cd , 
2cd , 

3cd and 
4cd  are known. 

Since 
0cd  and hence ),,,|(

43210 ccccc ddddkdProb   

are not available during decoding, to predict the current 
coefficient c0 in the proposed method, the probability is 
estimated as 
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(a) (b) 

Fig. 2 – (a) A mosaic CFA image and (b) its one-level 5/3 
wavelet transform outputs: LL (top-left), LH (top-right), HL
(bottom-left), HH (bottom-right) subbands 

 

Fig. 3 – A current subband coefficient c0 and its causal adjacent 
neighbors for the proposed statistic-based prediction 

(a) (b) 
Fig. 4 – (a) A causal template and (b) four possible optimal 
direction indexes for coefficient p0 
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where C(|) is a conditional counter used to keep track of 
the occurrence frequency of that k is the optimal direction 
index of a processed coefficient whose western, 
northwestern, northern and northeastern neighbors’ 
optimal direction indices are, respectively, 

1cd , 
2cd , 

3cd  

and 
4cd . 

As we have 
jcd {1,2,3,4} for j=1,2,3,4, there are 

totally 256 (=44) possible combinations of 
1cd , 

2cd , 
3cd  

and 
4cd . Accordingly, 256×4 counters are required and a 

table of 256×4 entries is constructed to maintain these 
counters. This table is initialized with all entries set to 1 
before the compression starts and is updated in the course 
of the compression. As soon as coefficient c0 is encoded, 
counter ),,,|(

43210 ccccc dddddC  is increased by 1 to update 

the table. 
With the table which collects the statistics so far 

about the occurrence frequencies of particular optimal 
direction index values when processing the subband, the 
proposed predictor can learn from experiences to improve 
its prediction performance adaptively. 

 

3. PROPOSED COMPRESSION ALGORITHM 

Fig. 5 shows the structure of the proposed 
compression algorithm. In the encoding phase, the input 
CFA image is first converted to four subbands, namely LL, 
LH, HL and HH, by applying a simple one-level 
reversible 5/3 wavelet transform [10]. The subbands are 
then coded separately. 

To code a subband, the subband is raster-scanned and 
each subband coefficient is predicted with its four causal 
neighboring coefficients by using statistic-based 
prediction, the prediction technique proposed in Section 2. 
The prediction error of the subband coefficient, say ei,j, is 
then given by 

jijiji cce ,,,
ˆ  (5) 

where ci,j is the real coefficient value and ĉi,j is the 
predicted value of ci,j. The error residue ei,j is then mapped 
to a non-negative integer as follows to reshape its value 
distribution from a Laplacian one to an exponential one 
for Rice code. 
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The Rice code is employed in the proposed 
compression method because of its simplicity and its 
efficiency in handling exponentially distributed sources. 
In Rice code, the mapped residue Ei,j is compressed by 
splitting it into a quotient Q=floor(Ei,j/λ) and a remainder 
R=Ei,jmodλ with a positive integer λ=2k called Rice 
parameter, where k≥0. The quotient and the remainder are 

then saved for storage or transmission. 
Parameter k is critical to the compression 

performance as it determines the code length of Ei,j. For a 
geometric source S with distribution parameter (0,1) 
(i.e. Prob(S=s)=(1-)s for s=0,1,2,…), the optimal 
coding parameter k is given as 
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where 2/)15(   is the golden ratio [11] and µ is the 

expectation value of the source. As long as µ is known, 
parameter  and hence the optimal coding parameter k for 
the whole source can be determined easily. 

In the proposed method, µ is adaptively estimated in 
the course of encoding a subband. In particular, it is 
estimated by 
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where ~  is the current estimate of µ for selecting the k to 

determine the codeword format of the current Ei,j, p
~  is 

the previous estimate of ~ , Mi,j is the local mean of Ei,j 

obtained from the causal adjacent mapped errors, and  is 
a weighting factor which specifies the significance of p

~  

and Mi,j when updating ~ . ~  is updated for each Ei,j.  

The initial value of p
~  is 0 for all subband residue 

planes, while the value of  is obtained empirically in this 
paper. Experimental results showed that =1 can provide 
a good compression performance. 

The decoding process is just the reserve process of 
encoding. Rice decoding and inverse prediction are 
applied sequentially to obtain the four wavelet subbands. 
These subbands are then backward transformed to 
reproduce the original CFA image. 

 

(a) Encoder 

(b) Decoder 
Fig. 5 – Structure of the proposed compression algorithm 
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4. SIMULATION RESULTS 

Simulations were carried out to evaluate the 
compression performance of the proposed method. 
Twelve 24-bit color images of size 512×768 each as 
shown in Fig. 6 were sub-sampled according to Bayer 
pattern to form a set of testing CFA images. These CFA 
image were then directly coded by the proposed 
compression algorithm and some representative lossless 
compression schemes such as JPEG-LS [7], JPEG 2000 
(lossless mode) [8], LCMI [9] and CMBC [10]. 

Table 1 tabulates the output bit-rates of the CFA 
images achieved by various algorithms. It shows that the 
proposed scheme outperforms most evaluated methods. 
On average, the proposed scheme yields a bit-rate as low 
as 4.885bpp. It is around 1.336, 0.296 and 0.160 bpp 
lower than those achieved by JPEG-LS, JPEG2000 and 
LCMI respectively. These results demonstrate that the 
proposed prediction scheme is robust to remove the CFA 
data dependency. 

As for the computational complexity, the proposed 
algorithm requires about 0.061s to process a 512×768 
CFA image on a 3.0GHz Pentium 4 PC with 1024MB 
RAM. It is around 0.039s and 0.005s faster than CMBC 
and LCMI respectively. These results reveal that the 
proposed compression algorithm is more suitable than 
CMBC in applications where complexity is the critical 
concern although its output bit rate is a little bit higher 
than CMBC. 

5. CONCLUSIONS 

In this paper, a simple statistic-based prediction 
lossless compression algorithm for Bayer CFA images is 
proposed. By learning from previous statistics, the 
proposed predictor can improve its prediction 
performance adaptively. A context-based Golomb Rice 
code is also proposed to compress the subband prediction 
residues. Experimental results show that the proposed 
compression scheme can efficiently de-correlate the data 
dependency at a low complexity cost.  
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Fig. 6 –Twelve digital color images (referred to as image 1 to 
image 12 in raster scan order) 

 

Image JPEG-LS 
JPEG 
2000 

LCMI CMBC Ours 

1 6.403 5.816 5.824 5.478 5.613 
2 5.881 4.216 3.965 3.746 3.882 
3 6.682 4.931 4.606 4.379 4.515 
4 6.470 5.947 5.859 5.409 5.586 
5 6.295 5.899 5.966 5.570 5.716 
6 5.395 4.556 4.415 4.227 4.377 
7 5.628 4.485 4.307 4.089 4.228 
8 6.747 6.372 6.503 6.138 6.188 
9 6.288 5.555 5.487 5.171 5.261 
10 6.317 4.656 4.396 4.102 4.312 
11 6.827 4.525 3.960 3.847 3.937 
12 5.719 5.223 5.257 4.873 5.010 

Avg. 6.221  5.182  5.045  4.753  4.885 
Table 1 – Achieved bit-rates of various lossless compression 
algorithms in terms of bits per pixel (bpp) 
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