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Abstract—This paper presents a novel design method for the
structuring elements of morphological filters. The morphological
filters, which have been applied to low-level image processing
tasks, are implemented with max and min functions. Due to the
non-differentiability of the max and min functions, it is difficult to
apply any gradient-based optimization technique to design of the
morphological filters. In this paper, we introduce approximating
functions of the max and min functions to approximate the mor-
phological filters. Since the proposed approximating functions are
differentiable, the outputs of the approximated morphological
filters are also differentiable. The gradient based optimization
technique can be easily applied to the proposed approximated
morphological filters. We approximate the dilation and opening
filters with the approximated max and min functions, and design
the quasi-optimum structuring elements for the both filters.
In experiments, we demonstrate several design examples and
applications to image denoising.

I. INTRODUCTION

The mathematical morphology is a methodology of signal
and image processing based on set operations. Originally, the
morphological filters have been proposed for analysis of binary
images. Later, the morphological filters have been extended to
gray-level image processing methods and contribute to low-
level image processing tasks including image enhancement
and denoising[1]. The gray-level morphological filters are
constructed with two basic operations, dilation and erosion.
The dilation and erosion filters are implemented as the max
and min filters that output the maximum and minimum of the
intensities within local windows, respectively. A structuring
element[1] (SE) of the dilation and erosion specifies the shape
of the window and the coefficients that are added to the input
pixels within the window. For image denoising, closing and
opening filters are implemented as cascade connections of
the dilation and erosion filters. The closing filter is realized
by the dilation and successive erosion filtering and fills the
pits and valleys of the intensity surface of an input image.
The opening filter is realized by the erosion and successive
dilation and eliminates peaks and ridges of the intensity
surface. In the morphological filters, the image local structures
that are eliminated or preserved by filtering are specified by
the SE. Hence, the design of the SE is an important topic
in the morphological image processing. However, very few
approaches exist for design of the SE.

In Ref. [2], the design method for the stack filters, which
is a class of non-linear filters including the morphological
filters, has been proposed. However, this approach is limited

to the filters that process quantized signals due to the thresh-
old decomposition. In Ref. [6][7][8], stochastic optimization
approaches have been proposed. These approach requires huge
number of trials and a long time to convergence of the SE.
The major difficulty of the design of the SE is that the min
and max functions are not differentiable. It is difficult to
apply gradient-based optimization techniques to design of the
SE. In order to remedy this problem, the rank functions that
include the max and min functions are approximated as the
differentiable functions in Ref. [3][4]. By this approximation,
the cost function that is defined for the SE is also approximated
as a differentiable function. A gradient-based optimization
technique can be applied to this approximated cost function.
This method can be applied to design the dilation and erosion
filters, however, it can not be applied to the opening and
closing filters that are implemented as cascade connections of
the erosion and dilation filter directly. For same purpose, the
generalized mean functions were introduced to approximate
the max and min functions in Ref. [5]. This approximation is
limited to nonnegative SEs and signals and is not capable to
approximate the general class of the morphological filters.

In this paper, we propose a novel design method for the
SEs of the morphological filters. We introduce approximating
functions of the max and min functions to approximate the
morphological filters. The approximating functions consist of
exponent and log functions. By using these approximating
functions, any morphological filter can be approximated as
a filter, the outputs of which are differentiable with respect
to an element of the SE. In the next section, the gray-
level morphological filters are defined with the max and
min functions. In Sect. 3, the approximating functions are
introduced to the morphological filters. In Sect. 4, the cost
function for the design of the SE is defined as the squared error
between an input and an ideal image. The gradient of the cost
function is also derived for the minimization. Finally, some
examples of the SE design are demonstrated. The denoising
result using the optimized SE is also shown to demonstrate
the advantage of the optimization.

II. MORPHOLOGICAL FILTERS FOR GRAY SCALE IMAGES

The morphological filters for gray-level images can be
implemented with “min” and “max” function. The “max”
function max (X) is defined for the set of the values X =
{x1, x2, · · ·xN} where xi ∈ R. This function returns the
maximum value of the elements in X. The “min” function
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min (X) returns the minimum of the values of the elements in
X. By using the max function, the morphological dilation for
a gray-level image {fx}x∈I is defined as

Dfx = max
(
{fx+y + sy}y∈C

)
(1)

where x and y denote two-dimensional coordinates of the
image pixels. I is a set of the coordinate of the pixels of
the image. C is a set of two-dimensional coordinates that are
supported by the SE sy. The morphological erosion for a gray-
level image is defined with the min function as

Efx = min
(
{fx−y − sy}y∈C

)
. (2)

Basically, the morphology filters for the gray-level images
are constructed with the dilation and erosion operations. The
opening filter is defined as the dilation after the erosion:

Ofx = max
(
{Efx+y + sy}y∈C

)
. (3)

By this operation, the image is approximated as a union of the
SE, each of them is generated by shifting of the coordinate
and intensities of {sx}x∈C. The closing filter is defined as the
erosion follows the dilation:

Cfx = min
(
{Dfx−y − sy}y∈C

)
. (4)

The closing filter is the dual of the opening filter and ap-
proximates the complement of the image with the SE[1]. In
this paper, we present the design methods for the dilation and
opening filters. It is obvious that the design methods for the
dilation and opening filters can be applied to the erosion and
closing filters by duality of the mathematical morphology.

III. APPROXIMATIONS OF MORPHOLOGICAL FILTERS

In this section, we introduce approximating functions of
the min and max functions to the morphological filters. By
introducing the approximating functions, the outputs of the
dilation and closing filters are approximated as differentiable
functions with respect to the elements of the SE. First, the
approximating function for the max function is defined for
the set of values X = {x1, · · ·xN} as

µ (X) = T log
N∑

i=1

exi/T (5)

where T is a scaling parameter for xi. The output of this
function mainly depends on the maximum of the values in
the set X. When all values of the elements of the set X are
bounded, then the difference between the maximum and its
approximation is bounded as

0 < µ (X) − max (X) ≤ T log N. (6)

Thus, the approximation error decreases along with the decre-
ment of the scale parameter T . When the all values in the set
X are same, the error becomes the maximum T log N . The
approximating function for the min function is also defined as

ν (X) = −T log
N∑

i=1

e−xi/T . (7)

The error between the approximation and the minimum of the
values of the set X is bounded as

−T log N ≤ ν (X) − min (X) < 0 (8)

When the all values in the set X are same, the difference
becomes the minimum −T log N .

By introducing the approximating functions, the dilation and
erosion filters can be approximated as

D̂fx = T log
∑
y∈C

e(fx+y+sy)/T (9)

and
Êfx = −T log

∑
y∈C

e−(fx−y−sy)/T , (10)

respectively. By using above approximation filters, the opening
filter is approximated as

Ôfx = T log
∑
y∈C

eÊfx+y+sy . (11)

The both dilation and opening are approximated as functions
that are differentiable by using the approximating functions of
max and min functions.

IV. OPTIMIZATION OF STRUCTURING ELEMENTS

For the optimization of the SEs, we suppose that an example
of an input and an ideal image is obtained. The cost function
is defined as the squared error between the input and the ideal
image. The cost function

QD =
1
2

∑
x∈I

(Dfx − gx)2 (12)

is defined for the optimization of the SE of the dilation filter
and

QO =
1
2

∑
x∈I

(Ofx − gx)2 (13)

for the opening filter. gx is the ideal output of the dilation
and opening filters. To apply the gradient-based optimization,
the dilation and opening are replaced with its approximation
shown in (9) and (11). The approximation of the cost functions
are obtained as

Q̂D =
1
2

∑
x∈I

(D̂fx − gx)2 (14)

and

Q̂O =
1
2

∑
x∈I

(Ôfx − gx)2 (15)

for the dilation and opening filters, respectively. Let us suppose
that syi is any element of the SE {sy}y∈C . When T = 1, the
partial differential of the cost function of the dilation filter is

∂Q̂D

∂syi

=
∑
x∈I

(
D̂fx − gx

) efx+yi
+syi

eD̂fx

. (16)
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Fig. 1. Texture images for experiments.

Fig. 2. Design examples of dilation filters. left: Noisy images, center: resultant
SEs and right: opening results

For the cost function of the opening filter, the partial differ-
ential is

∂Q̂O

∂syi

=
∑
x∈I

(Ôfx−gx )e−Ôfx (eÊfx+yi esyi +
∑
y∈C

∂eÊfx+y

∂syi

esy )

(17)
where

∂eÊfx

∂syi

= − e−fx+yi esyi

(
∑

y∈C e−fx+yesy)2
. (18)

We apply the gradient descent method by using the gradient
that are given by (16) and (18) to minimize the squared error
(14) and (15), respectively.

V. DESIGN EXAMPLES

In this section, some examples of the design of the SEs
by using the approximations of the morphological filters. In
order to minimize the squared error between an ideal image
and a morphological filter output in (14) or (15), we apply
the gradient descent algorithm with a line search. The vector
of the SE s = (sy1 · · · syN )T, where N is the number of the
elements in the SE, is updated with the rule

s ← s − t∇Q̂ (19)

where the elements of the gradient ∇Q̂ is given by (16) for
the dilation filter, (18) for the opening filter, respectively. t
is specified by using the line search at each iteration. The
iteration is stopped when the decrement rate (Qi−Qi+1)/Qi,
where Qi is the cost of the i-th iteration, is less than 10−4.

Fig. 3. Design examples of opening filters. left: Noisy images, center: resultant
SEs and right: opening results

Fig. 4. Design of opening filter for Lenna image.

For the approximation of the morphological filters, the
scale parameter T have to be specified. The approximation
precisions of the morphological filters depend on the scale
parameter T . As seen in (6) and (8), the absolute of the
difference between the true and the approximation of the min
or max function decreases along with the decrement of T .
However, smaller T tends to cause slow convergence rate since
the range of the exponents expands with T decreases. T is
empirically specified as 4.0 for gray-level images, intensities
of which in the range [0, 255]. The images that are employed
for the experiments are shown in Fig. 1. Each image contains
128×128 pixels and is extracted from the 512×512 image of
the Brodatz texture database. Each image consists of a texture
that can be characterized with a simple local structure and is
appropriate to be modeled by mathematical morphology with
single SE.

First, we demonstrate the design of the dilation filters, which
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Fig. 5. Denoising results obtained by opening filters.

minimizes the error between the original images shown in Fig.
1 and the filter outputs. The dilation filter can fill the pits of the
intensity surface of an image. Under this limitation, the noise
is generated by adding a random value in range [−255, 0] to
each pixel with occurrence probability 0.5. The noisy images
of the texture image in Fig. 1 are shown in the left column
of Fig. 2. The iteration of the gradient descent starts with the
initial SE that are specified as a flat 5 × 5 square SE for all
pairs of a clean and a noisy image. The SEs after convergence
of the minimization are shown in the second column of Fig.
2. The shape of the SE depends on the texture, to which the
SE is adapted. Each SE is similar to the local structure of
its corresponding texture image. The outputs of the dilation
filters with the optimized SEs are shown in the third column
of Fig. 3. These results are given by the dilation with the true
max function. We note that the significant difference between
the true and approximated dilation filter can not be observed
in all results. Actually, the difference of MSE (Mean Squared
Error) between the approximated and the true dilation filter
is less than 1% of the MSE obtained by the true filter and is
negligible. As seen in Fig. 3, the noises are well suppressed
in the outputs of the dilation filters. Simultaneously, the local
structures of the textures are preserved using the optimized
SEs.

The design examples for the opening filters are shown in
Fig. 3. On the contrary of the dilation filter, the opening filter
removes small peaks of the images. Thus, the opening filter
is used for the removal of the noises, values of which are
positive. Under this limitation, the noise is generated by adding
a random value in range [0, 255] to each pixel with occurrence
probability 0.5. The iteration of the gradient descent starts
with the initial SE that are specifies as a flat 5× 5 square SE.
The noisy images that are corrupted by the positive noises are
shown in the first column of Fig. 3. The converged SEs after
the minimization are shown in the second column of Fig. 3.

The results of the opening filters with the optimized SEs are
shown in the third column of Fig. 3. As well as the dilation
filter, the SE that is optimized to preserve the texture reflects
the local structure of image.

In the results shown in Fig. 2 and 3, the texture images are
employed for demonstration of the SE design. Moreover, the
target ideal images are obtained. In next example, the SE of
the opening filter is optimized to minimize the error between
the noisy and ideal images, and the resultant SE is applied
to denoising of a different image. For the design of the SE,
the pair of an ideal and noisy images shown in Fig. 4(a) and
(b) is employed. The optimum SE for the opening of Fig.
4(a) is shown in Fig. 4(c). This optimum SE is applied to the
denoising of the noisy image shown in Fig. 5(b). The denoising
result obtained with the optimum SE in Fig. 4(c) is shown in
Fig. 5(c). For comparison, the result obtained with a 3×3 flat
square SE, which is widely utilized for morphological image
analysis, is shown in Fig. 5(d). Compared with the square SE,
the noise is well suppressed while preserving the fine textures
in the denoising result obtained with the SE which is designed
by the proposed method.

VI. CONCLUSIONS

In this paper, we propose the SE design method for the
morphological filters. In order to introduce the gradient-based
optimization, we approximate the morphological filters with
the approximating function of the min and max functions. In
experiments, we show that the SEs that are obtained by the
proposed approximation well approximate the local structures
of the texture images while eliminating noise components.

In our approach, the cost function for the SE is defined by
the pair of the noisy and ideal image. In actual processing,
the ideal image is not obtained. Hence, the SE should be
designed from the noisy image without the ideal image. The
cost function that does not include the ideal image is a topic
of the future research.
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