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Abstract—In this paper a novel adaptive filtering scheme
for impulsive noise removal in color images is presented. The
noise detection algorithm is based on the concept of aggregated
distances assigned to the pixels belonging to the filtering window.
The value of the difference between the accumulated distance
assigned to the central sample and to the pixel with the lowest
rank serves as an indicator of the presence of impulses injected
into the image by the noise process and adaptively influences the
filter output which is a weighted mean of the central pixel of the
filtering window and the vector median of its samples.

The obtained results show that the proposed filter outperforms
existing impulse noise removal techniques for low noise contami-
nation and can be used in various applications in which the detail
preserving reduction of impulses plays an important role.

I. INTRODUCTION

The amount of research published in the last years indicates
a growing interest in the area of color image processing and
analysis. Furthermore, the surge of emerging applications such
as web-based processing of color images and videos, image re-
trieval systems indexing large multimedia databases, enhance-
ment and understanding of medical and biological images,
digital archiving, cultural heritage preservation projects and the
proliferation of smart devices such as video-enabled wireless
phones, wearable computers and personal digital assistant
tools, suggests that the demand for new, more powerful and
cost effective multichannel filtering solutions will continue.

Computer vision systems very often use color information to
sense the environment and therefore the correct processing of
color information is of great importance in various tasks of pat-
tern recognition and image understanding. Unfortunately, noise
and other impairments associated with the acquisition and
transmission can significantly degrade the value of the color
information carried by digital images. This usually declines
their perceptual fidelity and also decreases the performance of
the task for which the image was created.

It comes therefore as no surprise that the most common
signal processing task is noise filtering. The reduction of noise
is an essential part of any image processing based system,
whether the final information is used for human perception or
for an automatic inspection and analysis [1].

The correction of the signal distortions is a process, in which
disturbances introduced by the sensors are rectified, with the
goal being to obtain the image or generally the signal, which
corresponds as closely as possible to the output of an ideal
imaging system. Thus, correcting signal artifacts, in practice
means adjusting the characteristics of the imaging system to

meet specific demands of the human observer or the computer
vision system.

During image formation, acquisition, storage and transmis-
sion many types of distortions limit the quality of digital
images. Transmission errors, periodic or random motion of
the camera system during exposure, electronic instability of
the image signal, electromagnetic interferences, sensor mal-
functions, optic imperfections or aging of the storage material,
all disturb the image quality. In many practical situations,
images are corrupted by the so called impulsive noise caused
mainly either by faulty image sensors or due to transmission
errors resulting from man-made phenomena such as ignition
transients in the vicinity of the receivers or even natural
phenomena such as lightning in the atmosphere.

In this paper the problem of impulsive noise removal in
color images is addressed and an efficient adaptive technique
capable of removing the impulsive noise and preserving im-
portant image features is proposed.

The paper is organized as follows. In the next section a
short overview of the basic multichannel filtering schemes is
provided. Then the new filtering approach is introduced and its
similarity to existing filtering schemes is discussed. Section III
presents the construction of the new adaptive filtering scheme
and section IV covers the experimental results performed on
the test images contaminated with impulsive noise. The paper
ends with a short conclusion.

II. VECTOR MEDIAN BASED FILTERS

A multichannel image is a mapping Z2 → Zm representing
a two-dimensional matrix of of size N1×N2 consisting of
m-component samples (pixels), xi = (xi1, xi2, . . . , xim) ∈
Zl, where m denotes the number of channels, (in the case of
standard color images, parameter m equals 3). Components
xik, for k = 1, . . . ,m and i = 1, 2, . . . , N , N = N1 ·N2,
represent the color channel values quantified into the integer
domain..

The majority of the nonlinear, multichannel filters intend for
the suppression of impulse noise in color images are based on
the ordering of vectors in a sliding filter window. The output
of these filters is defined as the lowest ranked vector according
to a specific vector ordering technique [2], [3].

Let the color images be represented in the commonly used
RGB space and let {x1, x2, . . ., xn} be 3-dimensional
samples from the sliding filter window W , with x1 being the
central element in W . The goal of the vector ordering is to
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arrange the set of n vectors {x1, x2, . . ., xn} belonging to
W using some sorting criterion.

The most widely used ordering scheme is based on the
aggregated distances assigned to the samples belonging to the
filtering window defined as

ri =
n∑
j=1

ρ(xi,xj) , (1)

where ρ(xi,xj) is the distance between the vectors xi
and xj . The increasing ordering of the scalar quanti-
ties {r1, r2, . . . , rn} generates the ordered set of vectors
{x(1),x(2), . . . ,x(n)}.

One of the most important noise reduction techniques is the
Vector Median Filter (VMF), whose output is the vector x(1)

from W for which the sum of distances to all other vectors
belonging to W is minimized and it satisfies, (see Fig. 1) [2]∑

j

ρ
(
x(1),xj

)
≤
∑
j

ρ (xi,xj) , xi,xj ∈W . (2)

The Vector Median Filter (VMF) is the most popular
vectorial operator intended for smoothing out spikes injected
into the color image by the impulse noise process. This filter is
very efficient at reducing the impulses, preserves sharp edges
and linear trends, however it does not preserve fine image
structures, which are treated as noise and therefore generally
the VMF tends to produce blurry images.

x(1)

x1

VMF

Fig. 1: The VMF output is the centrally located vector x(1).

The VMF concept has been generalized and the so-called
Weighted Vector Median Filter (WVMF) has been proposed
[4], [5]. Using the weighted vector median approach, the filter
output is the vector x(1) belonging to W , for which the
following condition holds

n∑
j=1

ψj ρ
(
x(1),xj

)
≤

n∑
j=1

ψj ρ (xi,xj) , xi,xj ∈W . (3)

where ψj , j = 1, . . . , n are weights assigned to the pixels
xj from W . If ψ1 > 1 and ψk = 1 for k = 2, . . . , n,
(ψ = {ψ1, 1, 1 . . . , 1}), then the Central Weighted VMF

(CWVMF) which privileges the pixel x1 is obtained [5]–
[7]. The CWVMF has the ability of noise removal, while
preserving better fine image details, (lines, edges, corners,
texture) and significantly outperforming the standard VMF.

The drawback of the filtering methods based on the ordering
of samples according to the values of the aggregated distances
is that the derived filters operate uniformly over the image and
unnecessary replace pixels which were not corrupted by the
noise process.

To alleviate this drawback many switching mechanisms
were introduced into the structure of the impulsive noise
reduction filters [8], [9]. The goal of a switching filtering
scheme is to efficiently detect the noisy pixels and to replace
them by a noise removal filter output, while preserving the
uncorrupted samples.

An extension of the VMF, in which an adaptive switching
filtering design was utilized, was proposed in [10]. This
switching design, based on the order statistics and relying on a
thresholding parameter, suppresses efficiently impulsive noise
present in color images, while preserving the image details.

In [11]–[14] adaptive switching techniques were introduced.
The major advantage of these methods is that they filter out
the noise component while adapting itself to the local image
structures and in this way they are able to eliminate strong
impulsive noise while preserving edges and retaining fine
image details. As these algorithms can be treated as fuzzy
modifications of the commonly used vector median, they are
fast and easy to implement.

In order to avoid excessive blurring of images during the
filtering process, the Signal Dependent Rank-Ordered Mean
(SD-ROM) filter was proposed [15]. In the SD-ROM approach,
the filtering operation is conditioned on the differences be-
tween the input pixel and its rank-ordered neighbors from W .
The filter yields satisfactory results, however its thresholding
parameters are dependent on the noise intensity and thus a
proper settings of the thresholds is required.

In [16] a switching scheme based on the local energy
derived from on the Teager-like operator was described [17].
The pixels of the color image whose energy exceed a local
threshold are being detected as outliers and replaced in this
scheme by the median of the RGB color image channels.

Another scheme proposed in [18] divides the pixels of the
filtering window into two groups. The first one consists of
the pixels similar to the central pixel x1 and the other one is
composed of those pixels, which deviate greatly in terms of the
Euclidean distance from x1. The division into the two classes
of pixels is performed utilizing the Fisher linear discriminant,
which enables the labeling of the central pixel as noisy or
undisturbed by noise process.

Another approach described in [19], [20] divides the set
of pixels in the filtering window using the extension of the
concept of the σ-filtering. The measure of the dispersion of
the input pixels is calculated as the mean sum of distances
between the output of the VMF and all other pixels in W . In
this way a fast and robust modification of the VMF can be
realized.
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III. PROPOSED FILTERING DESIGN

The well known local statistic filters constitute a class of
linear minimum mean squared error estimators and they make
use of the local mean and variance of the input set W =
{x1, x2, . . . , xn} defining the filter output for the gray-scale
images as [21], [22]

yi = x̂i + α (xi − x̂i) = αxi + (1− α)x̂i , (4)

where x̂i is the arithmetic mean of the image pixels belonging
to the filtering window W centered at a pixel position i and
α is a filter parameter usually estimated through [6]

α =
σ2
x

σ2
n + σ2

x

, x̂i =
1
n

n∑
j=1

xj , ν
2 =

1
n

n∑
j=1

(xj − x̂i)2 ,

σ2
x = max

{
0, ν2 − σ2

n

}
, α = max

{
0, 1− σ2

n/ν
2
}
, (5)

where ν2 is the local variance calculated from the samples
in W and σ2

n is the estimate of the variance of the noise
process. If ν � σn, then α ≈ 1 and practically no changes
are introduced. When v < σn, then α = 0 and the central pixel
is replaced with the local mean. In this way, the filter smooths
with the local mean, when the noise is not very intensive and
leaves the pixel value unchanged, when a strong signal activity
is detected. The major drawback of this filter is that it fails to
remove impulses and leaves noise in the vicinity of edges.

Equation (4) can be rewritten using the notation xi = x1,
(x1 is the central sample in W ), [6] as

y1 = αxi + (1− α)x̂i = αx1 + (1− α)x̂1 =
= (1− α) (ψ1x1 + x2 + . . .+ xn) /n, (6)

with ψ1 = (1− α+ nα)/(1− α) and the local statistic filter
defined by (4) is reduced to the central weighted average,
with a weighting coefficient ψ1. In this way the set of weights
{ψ1, 1, 1, . . . , 1} is assigned to the set of pixels in the filtering
window {x1, x2, . . . , xn}

y1 =
1

n+ ψ1 − 1

n∑
k=1

ψkxk , (7)

If the weighting is applied to the ordered sequence of gray-
scale samples belonging to W : {x(1), . . . , x(µ), . . . , x(n)},
where x(1) and x(n) are the minimal and maximal pixel values
and x(µ), (µ = (n + 1)/2) denotes the median of the input
set, then

y1 =
1∑n

k=1 ψk

n∑
k=1

ψkx(k) . (8)

Taking the weighting set {1, 1, . . . , ψµ, . . . , 1}, special em-
phasis is given to the median of the input set x(µ). Hence

y1 =
(

n

n+ ψµ − 1

)
x̂1 +

(
ψµ − 1

n+ ψµ − 1

)
x(µ) =

= (1− α)x̂1 + αx(µ) , (9)

which is a compromise between the median x(µ) and the
average x̂1 controlled again by the parameter α.

Let us now apply a weighting structure defined by the
weights {1, 0, . . . , ψµ, . . . , 0}. Such a setting of the weights
leads to the output defined by

y1 =
1

1 + ψµ

(
x1 + ψµx(µ)

)
= αx1 + (1− α)x(µ) . (10)

If we work on the set of ordered vectors {x(1),x(2), . . . ,x(n)}
then (10) can be rewritten as

y1 =
1

1 + ψ1

(
x1 + ψ1x(1)

)
= αx1 + (1− α)x(1) , (11)

where the weighting set is defined as:
{ψ1, 0, . . . , 0, 1, 0, . . . , 0} in which the weight ψ1 is assigned
to the vector median x(1) of the input set from W and 1 is
assigned to the central pixel x1.

Clearly, the filtering structure defined by (11) is similar
to approaches defined by (4), (6) and (9). However, as our
aim is to construct a filter capable of removing impulsive
noise, instead of the mean value, the VMF output is utilized
and the noise intensity estimation mechanism is accomplished
through the coefficient α, which should be adjusted to the
noise contamination level.

In this way, the proposed technique is a compromise be-
tween the VMF and the identity operation. When an impulse
is present, then the value of α should be 0, otherwise it should
be 1. It is interesting to observe that the filter output yi lies
on the line joining the vectors x1 and x(1) and depending on
the value of α, it slides from the identity operation (x1) to the
vector median (x(1)) [23], [24].

R

G

B

x1

αx1

x(1)

(1− α)x(1)

yi

Fig. 2: Construction of the filter output as a weighted mean
of the central pixel x1 and the vector median x(1).

The filtering efficiency of the proposed scheme depends
strongly on the accuracy of the impulse detection. The straight-
forward choice would be to detect the impulses by measuring
the difference between the central pixel of the filtering window
and the vector median of its samples. However, such an
approach is not suitable for noise detection, as the image
texture and edges can be easily treated as noise, which leads
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to extensive image smoothing, caused by unnecessary pixel
replacement by the vector median.

The proposed switching filter is based on the difference be-
tween the aggregated distance r1 assigned to the central pixel
of the filtering window and the value of r(1) corresponding to
the vector median output. Introducing the notation: r1 = rc
and r(1) = rm, the measure of pixel distortion rd is then
expressed as: rd = rc − rm.

Figure 3 shows examples of the detected noise using parts
of the test images LENA and GOLDHILL. The visual com-
parison of the noise map composed of the values of rd and
the differences between the noisy and original test images,
confirms the good noise detection ability of the proposed
approach. The map of the detected noise corresponds very
well with the real corruption derived from the noisy and clean
images.

To discriminate between pixels corrupted by impulse noise
and the undisturbed samples, a global thresholding scheme
could be applied. However, the thresholding of the noise map
would lead to many errors which would result in retaining
the impulses and unnecessary undisturbed pixel replacement.
To alleviate the problems connected with hard thresholding, a
soft scheme has been applied. Utilizing the filtering framework
defined in Eq. (11), we can use the noise map as a distortion
measure and make the α coefficient to be dependent on the
values of the noise intensity rd. In this way, every pixel will
be replaced by the weighted mean of the central pixel of W
and its vector median.

Of course, the efficiency of such a scheme depends heavily
on the proper choice of the α coefficient. Experimental results
indicates that satisfactory results can be achieved using various
kernel functions known from the nonparametric estimation
theory. Therefere, for the presentation of the filter efficiency
the following form of the α coefficient has been chosen

α = exp
{
−
(rd
h

)2
}
, (12)

where h is a normalization parameter.

IV. EXPERIMENTS

In order to evaluate the effectiveness of the novel switching
filter a set of test images (Fig. 4) was contaminated with three
kinds of impulsive noise. In the first two noise models, the
noisy pixels xi = {xi1, xi2, xi3} are defined as

xiq =
{
ρiq , with probability π ,
oiq , with probability 1− π , (13)

where oiq denotes the q-th component of the original pixel at
position i and the contamination component ρiq is a random
variable.

If the variable ρ can take any discrete value in the range
[0, 255] the uniform or random-valued impulsive noise model
is obtained, which will be denoted in this paper as α, (this kind
of noise was used to contaminate the test images presented in
Fig. 3). If ρ takes only the value 0 or 255, the salt & pepper or
fixed-valued impulse noise is modeled and it will be denoted

as β. The third kind of noise denoted as γ is defined as [1],
[8], [9]

xi =


oi, with probability 1− p,

{ρi1, oi2 , oi3}, with probability p1 p,
{oi1 , ρi2, oi3}, with probability p2 p,
{oi1 , oi2 , ρi3}, with probability p3 p,
{ρi4, ρi4, ρi4}, with probability p4 p,

(14)

where p is the noise intensity and p1, p2, p3 are corruption
probabilities of each color channel, so that

∑4
1 pκ = 1. The

variables ρiκ, κ = 1, . . . , 4 take on the value 0 or 255
with equal probability. In this work, the noise model γ will
generally denote the case with pκ = 0.25 for κ = 1, . . . , 4.
The three noise types are depicted in Fig. 5.

LENA GOLDHILL BUTTERFLY

PARROTS FLOWER FRUITS

RAFTING LOCOMOTIVE MOTORBIKES

Fig. 4: Test images used for the simulations.

(a) NM α (b) NM β (c) NM γ

Fig. 5: visualization of the applied noise models.

For the measurement of the restoration quality, the com-
monly used Mean Squared Error (MSE) expressed through
the Peak Signal to Noise Ratio (PSNR) was used, as the MSE
(denoted here as ς) is a good measure of the efficiency of
impulsive noise suppression. The PSNR is defined as

PSNR = 20 log10

(
255
√
ς

)
, ς =

N∑
i=1

‖xi − oi‖22

N
, (15)
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(a) original image (b) noisy image (c) real contamination

(d) map of rc (e) map of rm (f) detected noise: rc − rm

(g) original image (h) noisy image (i) real contamination

(j) map of rc (k) map of rm (l) detected noise: rc − rm
Fig. 3: Illustration of the noise detection scheme: parts of test images LENA and GOLDHILL (a), (g) and their noisy versions
(b), (h) together with the difference of the images showing the injected impulse noise (c), (i). Below the maps of rc, rm and
their difference rd = rc − rm is presented. Note the similarity between (c) and (f) and also between images (i) and (l).
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where N is the total number of image pixels, and xiq , oiq
denote the q-th component of the noisy image pixel channel
and its original, undisturbed value at a pixel position i ,
respectively.

For the evaluation of the detail preservation capabilities of
the proposed filtering design the Mean Absolute Error (MAE)
has been used

MAE =
1
N

N∑
i=1

‖xi − oi‖1 , (16)

where ‖ · ‖l denotes the kind of the used Minkowski norm.

(a)

(b)

Fig. 6: Dependence of the PSNR on the h parameter for the
LENA (a) and GOLDHILL (b) test images. The dots show
the maxima of the plots and indicate the optimal h values for
which the plots attain their maxima.

Figure 6 shows the dependence of the PSNR on the h
smoothing parameter for two test images contaminated by
the noise model α. As can be observed, the optimal value
of the smoothing parameter h in Eq. 12, for which the PSNR
measure attains the maximal value depends significantly on the
contamination level p defined as the percentage of corrupted
pixels.

Figure 7 shows the histograms of the contaminated GOLD-
HILL image composed of the values of rc, rm and rd for
increasing noise intensity. As can be seen by a comparison of
the histograms, with increasing noise level p, the histograms
are shifted towards higher values, which is confirmed by plots
depicted in Fig. 8, which show the mean values of rc, rm and
rd denoted as r̂c, r̂m and r̂d evaluated for two test images.
Additionally, the increase of the mean values of the rd is
linearly dependent on the noise level p, which enables to
estimate the noise level knowing the mean value of r̂d derived
from its histogram. Figure 9 depicts that the linear dependence
of rd is similar for the commonly used test images (Fig. 4).

Figure 10 shows the dependence of the optimal value of
the inverse of the optimal smoothing parameter, which will be
denotes h∗ = 1/h on the noise intensity p. This dependence is
also of linear character, which enables to combine the values
of r̂d and h∗ as they are both linearly dependent on the noise
intensity. This observation is confirmed by Fig. 11, which
shows a linear dependence between the values of r̂d and h∗

which allows for adaptive tuning of the α parameter according
to the noise intensity level. This behavior is quite important
as it can be used for other denoising techniques requiring the
estimation of the noise intensity in order to achieve optimal
filtering efficiency.

The experimentally found formula allowing to estimate the
optimal normalization parameter h is then

h∗ = 0.00398 · r̂d + 0.0177, h∗ = 1/h, (17)

The effectiveness of the proposed filtering design was com-
pared with a set of the most efficient noise removal switching
filters evaluated in the extensive survey [25]:
• Adaptive Center-Weighted Directional Distance Filter,

(ACWDDF), [26],
• Peer Group Filter, (PGF), [27],
• Sigma Directional Distance Filter based on Rank,

(SDDFr), [28],
• Adaptive Center-Weighted Vector Median Filter,

(ACWVMF) [26],
• Adaptive Center-Weighted Vector Directional Filter,

(ACWVDF), [26],
• Modified Center-Weighted Vector Median Filter,

(MCWVMF), [29],
• Sigma Directional Distance Filter based on Mean,

(SDDFm), [28],
• Sigma Vector Median Filter based on Rank, (SVMFr),

[28],
• Fast Fuzzy Noise Reduction Filter, (FFNRF), [30].
Analyzing the plot presented in Fig. 14 which shows the

filtering results obtained for the test color image RAFTING
contaminated with uniform noise of intensity 0.05, 0.1 and
0.15 it is clear that the proposed filtering approach significantly
outperforms in terms of the PSNR measure the most efficient
filtering designs known in the literature [25]. The MAE
measure is similar to the analyzed filters, which is due to the
smoothing introduced by the VMF in the applied weighting
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rc rm rd
Fig. 7: Histograms of the maps of rc, rm and rd for the GOLDHILL image contaminated by the uniform impulse noise.

Fig. 8: Dependence of the mean values of rm, rc and rd on
the noise intensity p for the LENA and FLOWER test images.

scheme of the proposed filter. The excellent behavior of the
new filter is also confirmed in Tab. I which summarizes
the results obtained for the RAFTING, LOCOMOTIVE and
MOTORBIKES test images. The subjective analysis of the
filtering results offered by the new filter and the methods
used for comparisons is provided in Fig. 13, which shows
the restored RAFTING image. As can be observed the new
technique removes the impulses injected by the noise process
and preserves the fine image details.

TABLE I: Comparison of the filtering efficiency of the pro-
posed filter as compared with the best filters evaluated in
[25] for the RAFTING, LOCOMOTIVE and MOTORBIKES
test images contaminated by the uniform noise

image RAFTING LOCOMOTIVE MOTORBIKES
FILTER p MAE PSNR MAE PSNR MAE PSNR

PROPOSED 0.05 1.02 35.07 3.14 26.87 1.23 33.47
0.10 1.43 33.44 4.05 25.64 1.79 31.49
0.15 1.82 32.26 4.81 24.81 2.33 30.22

ACWDDF 0.05 0.97 34.51 2.43 27.17 1.23 32.86
0.10 1.30 33.31 2.94 26.55 1.62 31.64
0.15 1.62 32.33 3.45 25.90 2.04 30.51

PGF 0.05 0.75 33.81 3.49 25.16 1.09 31.69
0.10 1.13 32.42 4.16 24.58 1.60 30.29
0.15 1.54 30.95 4.84 23.97 2.14 29.07

SDDFr 0.05 1.13 33.69 2.74 26.64 1.07 33.22
0.10 1.24 33.30 2.82 26.63 1.33 32.17
0.15 1.45 32.36 3.05 26.23 1.67 30.90

ACWVMF 0.05 0.73 33.72 3.27 25.04 1.08 31.28
0.10 1.06 32.68 3.71 24.71 1.48 30.29
0.15 1.41 31.57 4.14 24.33 1.92 29.33

ACWVDF 0.05 1.25 32.58 2.73 26.47 1.64 30.63
0.10 1.63 31.59 3.35 25.62 2.14 29.28
0.15 2.02 30.49 3.99 24.80 2.66 28.19

MCWVMF 0.05 0.69 33.93 1.45 28.09 0.65 32.38
0.10 1.08 30.95 2.01 25.99 1.19 29.08
0.15 1.64 28.02 2.71 24.13 1.89 26.43

SDDFm 0.05 1.67 32.44 3.64 25.80 1.73 31.34
0.10 1.77 32.02 3.67 25.82 1.99 30.51
0.15 1.99 30.93 3.92 25.37 2.33 29.35

SVMFr 0.05 1.40 32.58 3.39 25.53 1.39 31.12
0.10 1.48 32.14 3.54 25.21 1.61 30.28
0.15 1.67 31.17 3.79 24.70 1.95 29.08

FFNRF 0.05 0.89 32.28 4.18 23.33 1.28 29.95
0.10 1.23 31.43 4.61 23.09 1.68 29.15
0.15 1.58 30.48 4.99 22.84 2.11 28.33

V. CONCLUSIONS

In the paper an adaptive filtering design for impulsive noise
removal is proposed. The proposed noise detector together
with the adaptive scheme of choosing the optimal value of
the weighting parameter used in the construction of the filter
exhibits very good denoising properties outperforming the
known filtering solutions. The simplicity of the new algorithm
and its computational speed makes the noise removal method
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Fig. 9: Dependence of r̂d on the noise intensity p.

Fig. 10: Dependence of the optimal parameter h∗ on p.

very useful in the preprocessing of color images corrupted by
impulse noise.
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Fig. 11: Dependence between the optimal smoothing parame-
ter h∗ and the mean value r̂d: (a) linear dependence betweeen
h∗ and noise intensity p, (b) linear dependence between r̂d and
p, (c) linear dependence between h∗ and p. In the plots (a)
and (b) the standard deviations are shown and in plot (c) all
data points delivered by the evaluation of 9 test images (Fig.
4) contaminated by three noise types of various intensities are
depicted.

(a)

(b)

(c)

(d)

Fig. 12: Filtering efficiency: (a) parts of the test images
LENA and GOLDHILL, (b) images restored with the proposed
method, (c) test images distorted by respectively 15% and
10% uniform impulsive noise, (d) maps of the values of the
coefficient α.
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a) test image b) noisy image c) proposed

d) ACWDDF e) PGF f) SDDFr

Fig. 13: Comparison of the denoising results obtained with the new filtering technique in comparison with other filtering
methods, (test image RAFTING contaminated with uniform noise, p = 0.1).

Fig. 14: Comparison of the proposed noise reduction technique in terms of PSNR and MAE with other denoising methods,
(color test image RAFTING contaminated by the α noise.
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