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OutlineOutline
• Signal and System Decomposition

– Polyphase decomposition
– Structural subband decomposition

• Subband Discrete Transforms
- Subband discrete Fourier transform
- Subband discrete cosine trasform
- Applications

• Subband FIR Filter Design and 
Implementation

• Subband Adaptive Filtering
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PolyphasePolyphase DecompositionDecomposition

• In the M-band polyphase decomposition, a 
sequence {x[n]} is expressed as a sum of M 
subsequences                                   , 
obtained by down-sampling {x[n]} by a 
factor of M with i indicating the phase of 
the sub-sampling process
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PolyphasePolyphase DecompositionDecomposition

• For example, for M = 2, for a causal 
sequence {x[n]}, the two sub-sequences are:

- Even samples of {x[n]}            

- Odd samples of {x[n]}
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PolyphasePolyphase DecompositionDecomposition

• Physical Interpretation – 2-Band Case
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PolyphasePolyphase DecompositionDecomposition

• Likewise, for M = 3, for a causal sequence 
{x[n]}, the three sub-sequences are:
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PolyphasePolyphase DecompositionDecomposition

• Physical Interpretation – 3-Band Case
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PolyphasePolyphase DecompositionDecomposition
• Physical Interpretation – General Case
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PolyphasePolyphase DecompositionDecomposition

• The z-transform X(z) of a finite or infinite 
length sequence {x[n]} can be expressed as 
a finite sum of the z-transforms            of M 
subsequences             , 
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PolyphasePolyphase DecompositionDecomposition
• The M-band polyphase decomposition of X(z) 

is given by

where

• is  the i-th polyphase component of 
X(z)
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PolyphasePolyphase DecompositionDecomposition
• The polyphase decomposition can be 

written in matrix form as

where
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PolyphasePolyphase DecompositionDecomposition
• Physical interpretation
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PolyphasePolyphase DecompositionDecomposition
• Reconstruction of original sequence
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PolyphasePolyphase DecompositionDecomposition

• The sequence x[n], i.e., a delayed version of 
the input sequence u[n], can be developed 
from the M-sub-sequences          by up- 
sampling each subsequence by a factor of M 
and then interleaving the outputs  of the up- 
samplers

][nxi
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Structural Structural SubbandSubband 
DecompositionDecomposition

• The structural subband decomposition of 
X(z) is given by

where                 is an              nonsingular 
matrix
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Structural Structural SubbandSubband 
DecompositionDecomposition

• The structural subband decomposition is 
thus a generalization of the polyphase 
decomposition

• The functions            are called the 
structural subband components or 
generalized polyphase components of X(z)
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Structural Structural SubbandSubband 
DecompositionDecomposition

• Relation between the polyphase 
components            and the structural      
sub-band components            are given by)(zVi

)(zXi
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Structural Structural SubbandSubband 
DecompositionDecomposition

• If            denotes the inverse z-transform of          
, then it follows that

where        is the         -th element of
• The structural sub-band subsequences        

are basically given by a linear combination 
of the polyphase sub-sequences
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Structural Structural SubbandSubband 
DecompositionDecomposition

• Physical interpretation
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Structural Structural SubbandSubband 
DecompositionDecomposition

• Likewise, the polyphase subsequences            
can be recovered by a linear combination of 
the structural subband subsequences 
according to 

where       is the        -th element of T
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Structural Structural SubbandSubband 
DecompositionDecomposition

• A delayed version of the input u[n] can be 
developed by first up-sampling the M sub- 
sequences          and then generating the 
subsequences           by a linear combination 
of these up-sampled subsequences, and then 
interleaving the subsequences
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Structural Structural SubbandSubband 
DecompositionDecomposition

• Reconstruction of original sequence
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Structural Structural SubbandSubband 
DecompositionDecomposition

• The digital filter structure generating the 
structural subband sequences can be 
considered as an M-channel analysis filter 
bank, characterized by M transfer functions 
contained in the vector
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Structural Structural SubbandSubband 
DecompositionDecomposition

• The digital filter structure forming the 
reconstructed sequence from the structural 
subband sequences can be considered as an 
M-channel synthesis filter bank, 
characterized by M transfer functions 
contained in the vector
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SubbandSubband MatrixMatrix

• The transfer functions             and           
have bandpass frequency responses for a 
suitably chosen subband matrix T

• Depending on the application, the matrix T 
can have various forms

• To be useful in practice, the matrix T 
should be simple, if possible, both in terms 
of its elements and its structure
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SubbandSubband MatrixMatrix

• Structural simplicity is inherent in the DFT 
matrix         , which can be efficiently 
implemented using well known FFT 
methods

• Here, the channel frequency responses have 
form, providing at least some 

frequency selectivity
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SubbandSubband MatrixMatrix

• However, the elements of                 are 
given by

requiring conplex multiplications, choice of   
could also be advisable if only 

very few sub-bands are desired
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SubbandSubband MatrixMatrix
• For example, for M = 4, we have

which do not require any true multiplications
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SubbandSubband MatrixMatrix

• The corresponding magnitude responses are 
shown below
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SubbandSubband MatrixMatrix
• Both structural and element-wise    

simplicities are inherent in the              
Hadamard matrix , given by

where         is the            Hadamard matrix

and       is the Kronecker roduct
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SubbandSubband MatrixMatrix
• From the definition it follows that the order 

M of the Hadamard matrix must be a 
power-of-2, i.e.

• It can be shown that

• For M = 4,
MMM RR 11 =−
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SubbandSubband MatrixMatrix
• The corresponding magnitude responses are 

shown below

• Somewhat higher frequency selectivity of 
the bandpass responses have been obtained 
with a slight modified form of the matrix
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SubbandSubband Discrete TransformsDiscrete Transforms
• An interesting application of the structural 

subband decomposition concept is in the 
approximate, but fast, computation of 
dominant discrete-transform samples

• Two particular discrete transforms 
considered here are:
(1) Subband discrete Fourier transform,
(2) Subband discrete cosine transform

• The concept can be extended to other types 
of transforms and higher dimensions
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SubbandSubband Discrete Fourier Discrete Fourier 
TransformTransform

• The N-point DFT X[k] of a length-N 
sequence x[n] is given by the N samples of 
its z-transform X(z) evaluated on the unit 
circle at N equally spaced points,

where
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SubbandSubband Discrete Fourier Discrete Fourier 
TransformTransform

• From the M-band polyphase decomposition 
of X(z)

with P = N/M integer, it follows that
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SubbandSubband Discrete Fourier Discrete Fourier 
TransformTransform

• the DFT samples can alternately be expressed 
in the form

where                                 and            is the P- 
point DFT of the polyphase component
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SubbandSubband Discrete Fourier Discrete Fourier 
TransformTransform

• Physical interpretation
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SubbandSubband Discrete Fourier Discrete Fourier 
TransformTransform

• For M = 2, we  have

which describes the final twiddle-factor/ 
butterfly structure of a radix-2, decimation- 
in-time Cooley-Tukey (CT)-FFT
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SubbandSubband Discrete Fourier Discrete Fourier 
TransformTransform

• From the M-band structural sub-band 
decomposition of X(z)

with P = N/M integer, it follows that
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SubbandSubband DFTDFT
• the DFT samples can alternately be 

expressed in the form

where            is the P-point DFT of the i-th 
structural subband component

• This is the general form of the subband 
discrete Fourier transform (SB-DFT)
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SubbandSubband DFTDFT
• Physical interpretation
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SubbandSubband DFTDFT
• For M = 2 with              , we have

• Note:            is a lowpass signal, whereas,    
is a highpass signal
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SubbandSubband DFTDFT

• For             , if the decimation by M = 2 is 
repeated          times, a full-band SB-DFT 
algorithm results

• For               , it contains a length-N fast 
Hadamard transform
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SubbandSubband DFTDFT
• The number of multiplications required is 

equal to                 , same as in the CT-FFT 
algorithm

• However, there are                           more 
additions than that required in the CT-FFT 
due to the implementation of

• In the general case with a different sub-band 
matrix T, additional multiplications may 
arise
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SubbandSubband DFTDFT

• If the signal is a priori band-limited to a cut- 
off frequency                   , it may be simply 
down-sampled by a factor of M, and only 
N/M values feed a shorter FFT: the 
polyphase approach is then applicable

• If, however, the signal is not strictly band- 
limited, aliasing occurs
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SubbandSubband DFTDFT
• In the subband approach aliasing effects are 

reduced by the pre-filters

• Then, if the reduced aliasing is acceptable, 
branches can be dropped by pruning the SB- 
DFT and obtain approximate values of the 
dominant DFT samples
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SubbandSubband DFTDFT

• For example, if 1 band in an M-band 
subband decomposition is dominant,            
branches can be dropped and calculate a 
standard CT-FFT of length N/M of one 
decimated signal

• For an 8-band analysis, only 40% of the 
CT-FFT computer time is needed
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SubbandSubband DFTDFT
• Approximate SB-DFT calculation with M = 

4,             , and dropping of 3 out of 4 bands4RT =
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SubbandSubband DFTDFT
• Adaptive band selection in the case of 

Hadamard transform based sub-band DFT
• Based on averaged (signs of) differences 

between            and         in the 2-band DFT 
computation scheme shown below
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SubbandSubband DFTDFT

• In the general case of M > 2, the method is 
based on averaged (signs of) differences 
between corresponding subband component 
pairs

• The online estimation causes only a minor 
loss  of computational advantage gained by 
the subband calculation
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SubbandSubband Discrete Cosine Discrete Cosine 
TransformTransform

• The structural subband decomposition 
concept has also been applied to the 
approximate, but efficient, computation of 
the dominant samples of the DCT

• One of the most common forms of the DCT 
of a length-N sequence x[n], with N even, is 
given by
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SubbandSubband DCTDCT
• By applying the subband processing to x[n]

we can write
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SubbandSubband DCTDCT
where

with            denoting the (N/2)-point  DCT 
(discrete cosine transform) of 
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SubbandSubband DCTDCT
and

with            denoting the (N/2)-point DST 
(discrete sine transform) of 
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SubbandSubband DCTDCT
• The computation of the N-point DCT C[k] 

requiring the computation of an (N/2)-point 
DCT            and an (N/2)-point DST        
has been referred to as the subband DCT

• The above process can be continued to 
decompose the sub-sequences          and       

, provided N/2 is an even integer
• The process terminates when the final 

subsequences are of length 2
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SubbandSubband DCTDCT

• By exploiting the spectral contents of the 
subsequences, an efficient DCT algorithm 
can be developed

• For example, if x[n] is known to have most 
of its energy in the low frequencies, a 
reasonable approximation to C[k] can be 
obtained by discarding terms associated 
with high frequencies
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SubbandSubband DCTDCT

• The resulting approximation is given by

• The SB-DCT concept can be extended to 
higher dimensions
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60Original BABOON image

Image Compression ApplicationImage Compression Application
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Standard DCT, compr 50 Sub-band DCT, compr 50

Image Compression ApplicationImage Compression Application



62
Standard DCT, compr 100 Sub-band DCT, compr 100

Image Compression ApplicationImage Compression Application



63Original PEPPERS image

Image Compression ApplicationImage Compression Application
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Standard DCT, compr 50 Sub-band DCT, compr 50

Image Compression ApplicationImage Compression Application
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Standrard DCT, compr 100 Sub-band DCT, compr 100

Image Compression ApplicationImage Compression Application
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Efficient FIR Filter Design and Efficient FIR Filter Design and 
ImplementationImplementation

• Consider an FIR filter H(z) with an impulse 
response{h[n]} of length

• By applying the structural subband 
decomposition to H(z) we arrive at
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Efficient FIR Filter Design and Efficient FIR Filter Design and 
ImplementationImplementation

• The M-band structural subband 
decomposition of H(z) can be alternately 
expressed as

where           is given by
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Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• Realizations of H(z) based on the structural 
subband decomposition are as follows:
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Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• Parallel IFIR realization
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Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• Thus the second realization can be 
considered as a generalization of the 
interpolated FIR (IFIR) structure, where         

is the interpolator and           , the 
shaping filter, is of length P = N/M

• Note: Delays in the implementation of the 
sub-filters                in both realizations can 
be shared leading to a canonic realization of 
the overall structure
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Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• Further generalization obtained by choosing 
the number of bands M (i.e. the sub-band 
transform size) different from the sparsity 
factor L of the subfilters )( L

k zF
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Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• Corresponding realization
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Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• For             , the modified structure can 
realize any FIR transfer function H(z) of 
length up to                            , where P is the 
length of

• Coefficients of             are no longer unique, 
resulting in an infinite number of realizations 
for a given H(z) with fixed L and M

• For L < M, there is an increase in the number 
of multipliers

ML ≤

MLPN +−= )1(
)(zFk

)(zFk
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ImplementationImplementation

• Computational complexity of the overall 
structure can be reduced by choosing 
“simple” invertible transform matrices T
such as the Hadamard matrix

• Each interpolator section is a cascade of μ
 basic interpolators of the form
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ImplementationImplementation

• For an M-branch decomposition, the 
interpolator           has a lowpass magnitude 
response given by

• The interpolator           has a highpass 
magnitude response given by

• The remaining interpolators           with         
have each a bandpass magnitude response 
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)2/sin(
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ImplementationImplementation

• Each of the branches thus contributes to the 
overall response essentially within a 
“subband” associated with the 
corresponding interpolator

• For a narrow-band FIR filter, it may be 
possible to drop branches from the overall 
structure if these branches do not contribute 
significantly to the filter’s frequency 
response, thus leading to a computationally 
efficient realization
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Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• For L = M, the coefficients          of the 
subfilters can be expressed in terms 
of the coefficients {h[n]} of the overall 
filter H(z):

• Each subfilter has, in general, P non-zero 
coefficients

][nfk
)(zFk

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+

+⋅⋅=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− )]1([

][
][

1

]1[

]1[
]0[

PMkh

Mkh
kh

M
Pf

f
f

M

k

k
k

MM
R



79

Efficient FIR Filter Efficient FIR Filter 
ImplementationImplementation

• Simpler realizations are obtained in the case 
of linear-phase FIR filters

• The 4-branch realization of a length-8 type 2 
FIR filter is shown below
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Efficient FIR Filter DesignEfficient FIR Filter Design

• The structural subband decomposition of an 
FIR transfer function H(z) simplifies 
considerably the filter design process

• To this end, two different design approaches 
have been advanced
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• In one approach, each branch is designed 
one-at-a-time using either a least-squares 
minimization method or a minimax 
optimization method

• In the other approach, each subfilter is 
designed using a frequency sampling 
method
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• Let H(ω) denote the amplitude function of 
a linear-phase frequency response

• For the parallel IFIR structure we then have

where            and                are the 
amplitude functions of the k-th interpolator 
and the k-th sub-filter, respectively
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• Filter design problem - Determine the N/2M 
coefficients of each sparse subfilter 
for                              to approximate a 
specified )(ωH

)( M
k zF

Efficient FIR Filter DesignEfficient FIR Filter Design

1,,1,0 −= Mk K
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Least-squares optimization -
• By taking the samples of the respective 

amplitude functions at D suitably chosen 
discrete frequency points in the interval         

, we can writeπω ≤≤0
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• where
- a vector representing the discretized 
version of
- a diagonal matrix with diagonal 
elements given by samples of
- a column vector containing samples of
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Efficient FIR Filter DesignEfficient FIR Filter Design

• If        denotes the desired amplitude 
response samples of the parallel IFIR 
structure, the approximation error is then 
given by

• Design objective - Minimize the      -norm 
of e separately with respect to each of the 
sub-filters

2L
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• The minimization procedure results in the 
determination of the coefficients          of all 
sub-filters from which the impulse response 
samples of the overall filter can be obtained

• The computational complexity of the 
modified least-squares method is smaller by 
a factor of 1/M compared to that of the 
direct least-squares method

][nfk
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• Example - Design a linear-phase lowpass 
FIR filter of length 128 using an 8-band 
decomposition

• Filter specifications: passband edge at 0.02π
 and stopband edge at 0.04π

•
 

The gain response of the filter designed 
using the least-squares approach is shown 
on the next slide



89

Efficient FIR Filter DesignEfficient FIR Filter Design
• Gain response
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Minimax optimization -
• Here, the weighted error of approximation 

for a linear-phase filter design is given by

where             is the desired amplitude 
response and           is a weighting function
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Efficient FIR Filter DesignEfficient FIR Filter Design

• The optimization is carried out over one 
subfilter at a time using the Remez method

• The computational complexity of the 
structural subband based method is smaller 
by a factor of 1/M compared to that of the 
Parks-McClellan method
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• Example - Design a bandpass FIR filter of 
length with passband edges at 0.15π

 
and 

0.16π, and stopband edges at 0.1π
 

and 
0.21π, respectively

• Passband and stopband ripples are assumed 
to have equal weights

• Assume a 8-band decomposition
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• Gain response
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• It is possible to design a nearly optimum 
FIR filter, based on a 2-band Hadamard- 
matrix based structural subband 
decomposition, by applying the minimax 
routine to each of the two smaller size 
subfilters without repeated iterations and 
combining the paths
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Frequency-sampling approach
• Here, simple analytical expressions for the 

passband, transition band, and the stopband 
are first sampled at equally-spaced points 
on the unit circle to arrive at the original 
frequency samples,          ,                      , of 
the overall parallel IFIR structure

10 −≤≤ Nm)(mĤ
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• From           the desired frequency samples 
of the subfilters,          ,                     ,                

, are then determined using

where B 
and         is an             DFT matrix
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• An IDFT of the vector of the frequency 
samples of each subfilter yields its impulse 
response samples

• Example - Design a half-band FIR filter 
with a passband ripple of                      and a 
stopband ripple of                  using a 4-band 
decomposition

0013.0=δ p
001.0=δs
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• Gain response
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Efficient Decimator and Efficient Decimator and 
Interpolator StructuresInterpolator Structures

• Structural sub-band decomposition-based 
structure can be computationally more 
efficient than the conventional polyphase 
decomposition-based structure in realizing 
decimators and interpolators employing 
linear-phase Nyquist filters

• To this end, it is necessary to use transform 
matrices that transfer the filter coefficient 
symmetry to the sub-filters
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Efficient Decimator and Efficient Decimator and 
Interpolator StructuresInterpolator Structures

• A factor-of-4 interpolator structure
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SubbandSubband Adaptive FilteringAdaptive Filtering
• Based on the generalized structural sub- 

band realization
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• Here, the input signal x[n] is first processed 
by a fixed              unitary transform T, 
generating the signals         , which are then 
filtered by the sparse adaptive sub-filters

MM ×
][nvi
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• For large values of M, recursive DFT or 
DCT algorithms are computationally more 
efficient to implement the transform T than 
the FFT-type algorithms

• For small values of M, dedicated fast non- 
recursive algorithms are preferred to 
implement the transform T
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• The output y[n] can be expressed as

where                  
v[n]

is the vector of transformed inputs, and
f

is the subfilter coefficient vector containing 
the   -th coefficient of each sub-filter
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SubbandSubband Adaptive FilteringAdaptive Filtering
Normalized LMS Algorithm -
• The subfilter coefficient vector update 

equation is given by

• where μ is the adaptation step size, and       
is an             diagonal matrix containing the 
power estimates of
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• For M = L = N, i.e., P =1 (in which case 
each of the sub-filters consists of a single 
coefficient), the proposed method reduces 
to the transform-domain LMS algorithm

• For M = L = 1, and T = 1, the proposed 
method reduces to the conventional time- 
domain LMS algorithm



107

SubbandSubband Adaptive FilteringAdaptive Filtering
• The sub-band adaptive filter structure offers 

additional flexibility in the choice of the 
number of sub-bands M and the sparsity 
factor L

• This feature is attractive in the case of higher- 
order adaptive filters, as it provides a 
reduction in the computational complexity 
compared to the transform-domain algorithm 
and improved convergence performance 
compared to the LMS algorithm



108

SubbandSubband Adaptive FilteringAdaptive Filtering

• Choice of a transform T with good 
frequency selection decreases the 
correlation among the transformed signals, 
which can be used to obtain a significant 
improvement in the convergence speed of 
the LMS algorithm for colored input signals

• In these cases, the DFT or DCT have been 
found to be useful
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• The contribution of each sub-filter is mainly 

restricted to a frequency sub-band, which 
can be used advantageously to increase the 
speed of convergence of the adaptive 
algorithm

• The structure also has the flexibility of 
allowing sub-bands not contributing greatly 
to the overall frequency response to be 
removed, reducing the number of operations 
needed for the filter implementation
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• Example - We examine the behavior of the 
subband adaptive line enhancer (ALE)

• Input consists of a single sinusoid of unit 
amplitude plus white Gaussian noise with a 
variance 0.25 (SNR = 3 dB)

• We choose N = 128, M = 8, P = 16
• For a DCT transform matrix we choose L = 8
• For a DFT transform matrix we choose L = 4
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• The coefficients were updated using the 

LMS algorithm
• The output power spectra estimated using 

averaged periodograms of 16 data blocks of 
length 512 for the different ALE structures

• In the DCT structure, 2 bands out of 8 were 
kept

• In the DFT structure, 1 band out of 8 were 
kept
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• In both DCT and DFT cases, the number of 

operations required for the ALE 
implementation was about 1/4-th of those 
required in the conventional ALE 
implementation

• Further savings in the number of operations 
in the subband ALE approach results when 
a frequency estimate of the input sinusoid is 
required
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• Output power spectra for

17.0=ωo

17.0=ωo
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• Output power spectra for the subband ALE 
structures show some minor peaks due to 
band removals which may be acceptable in 
most applications

• Subband ALE approch has been used in 
acoustic echo cancellation and adaptive 
channel equalization


	Structural Sub-band Decomposition: A New Concept in Digital Signal Processing
	Outline
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Polyphase Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Structural Subband Decomposition
	Subband Matrix
	Subband Matrix
	Subband Matrix
	Subband Matrix
	Subband Matrix
	Subband Matrix
	Subband Matrix
	Subband Matrix
	Subband Discrete Transforms
	Subband Discrete Fourier Transform
	Subband Discrete Fourier Transform
	Subband Discrete Fourier Transform
	Subband Discrete Fourier Transform
	Subband Discrete Fourier Transform
	Subband Discrete Fourier Transform
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband DFT
	Subband Discrete Cosine Transform
	Subband DCT
	Subband DCT
	Subband DCT
	Subband DCT
	Subband DCT
	Subband DCT
	Image Compression Application
	Image Compression Application
	Image Compression Application
	Image Compression Application
	Image Compression Application
	Image Compression Application
	Efficient FIR Filter Design and Implementation
	Efficient FIR Filter Design and Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Implementation
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient FIR Filter Design
	Efficient Decimator and Interpolator Structures
	Efficient Decimator and Interpolator Structures
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering
	Subband Adaptive Filtering

