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Abstract—Analysis of coupling effects in adaptive filters is
presented for feedback cancellation systems in hearing aids. As
the incoming signal, a sum of sinusoids in white noise is assumed
in this paper. In the proposed scheme two LMS-type adaptive
filters are used. The one is set for identifying the impulse response
of the feedback path. The other is associated with frequency
estimation. We propose a scheme using the constrained LMS
algorithm for the adaptive filter for frequency estimation. The
stationary point of the proposed algorithm is shown to be the
desired ones. We also show that the simultaneous stability near
the stationary point is guaranteed. Simulation results show the
validity of the theoretical findings.

I. I NTRODUCTION

In hearing aids an adaptive filter is used to model the
feedback path from the receiver (speaker) to the microphone
and cancels its effect. The conventional LMS algorithm is
biased, since the input signal and the incoming signal which
acts as observation noise in the adaptive filter are correlated
due to the feedback path.

In [1], the PEM-AFC (Prediction Error Method-based Adap-
tive Feedback Canceller) algorithm has been proposed for con-
tinuous unbiased cancellation for the case where the incoming
signal is an AR (autoregressive) process. But its convergence
mechanism to the desired point was not discussed.

In [2], under an assumption that the incoming signal is a
sum of sinusoids and white noise, a similar algorithm with
two LMS-type adaptive filters was proposed where the one is
to identify the feedback path and the other is associated with
estimation of frequencies. For the latter the LMS algorithm for
linear prediction is used. The stability analysis of the former
was conducted under the assumption that the latter converges
to have the desired notch characteristic.

In [3], the stability analysis for simultaneous adaptation
of both adaptive filters was taken into account where the
incoming signal is an AR process.

In this paper, as another method of frequency estimation we
use the constrained LMS algorithm in [4] where the order of
the filter is equal to the number of sinusoids. Also, analysis
of the coupling effects of the two adaptive filters is conducted
for the proposed algorithm. It is shown that the coupling effect
disappears near the stationary point. Finally, simulation results
show the validity of the theoretical findings.

Fig. 1. Block diagram of the proposed algorithm for feedback cancellation

II. THE STATIONARY POINT OF THE PROPOSED
SCHEME

Fig.1 shows a block diagram of the proposed scheme. An
input signal to the hearing aids is denoted byd(n) and an
amplified output signal from the receiver is denoted byx(n).
The transfer functions of the forward path (amplifying circuit)
and the feedback path areG(z) and H(z), respectively. The
forward path transfer functionG(z) is the desired characteris-
tic of the hearing aids and is fixed and known, butH(z), the
transfer function of feedback path, is unknown and may be
slowly time-varying. So, the adaptive filter which is denoted
by W (z) is used to identifyH(z).

The signalsx(n) and e(n) in Fig.1 in the steady state are
written by

x(n) = G(z)e(n) (1)

e(n) = y(n) − W (z)x(n)
= d(n) + G(z)(H(z) − W (z))e(n), (2)

andW (z) andH(z) are given by

W (z) = w0 + w1z
−1 + · · · + wL−1z

−L+1 (3)

H(z) = h0 + h1z
−1 + · · · + hL−1z

−L+1 (4)

wherez−1 denotes the unit delay operator and for example,
G(z)e(n) means the filtering operation to the signale(n) by
the transfer functionG(z). We also see that

e(n) = Q(z)d(n), Q(z) =
1

1 + (W (z) − H(z))G(z)
(5)

where we assume thatQ(z) is stable. As in [2], we use the
following modified LMS algorithm forW (z). The tap weight
vectorw(n) is updated by

w(n + 1) = w(n) + µx′(n)e′(n) (6)
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whereµ is the positive step size,w(n), x′(n) are L dimen-
sional vectors defined by

w(n) = [w0(n), w1(n), · · · , wL−1(n)]T (7)

x′(n) = [x′(n), x′(n − 1), · · · , x′(n − L + 1)]T (8)

andx′(n), e′(n) are defined by

x′(n) = P̂ (z)x(n), e′(n) = P̂ (z)e(n) (9)

where these signals are the filtered version ofx(n), e(n)
by P̂ (z), respectively. The operation(·)T denotes transpose
of matrices or vectors. ThiŝP (z) needs to be appropriately
selected. The stationary point of the adaptive filter was de-
rived by the standard averaging method. The averaged system
corresponding to (6) is given by

w̄(n + 1) = w̄(n) + µE[x′(n)e′(n)]. (10)

The stationary point of̄w(n) is obtained by solving

E[x′(n)e′(n)] = 0 (11)

with respect tow̄(n) = w̄. Denoting the PSD (Power Spectral
Density) of the incoming signald(n) asS(ejω), from (1), (5)
and (9) thel-th element ofE[x′(n)e′(n)] is written as

(E[x′(n)e′(n)])l =

∫ π

−π

e−jlωG(ejω)

2π

∣∣Q(ejω)P̂ (ejω)
∣∣2 S(ejω)dω.

(12)

We assume that the incoming signald(n) is a sum ofK
sinusoids and white noise and express it as

d(n) =
K∑

p=1

Ape
jωpn + ν(n) (13)

whereν(n) is white noise with mean0 and varianceσ2. From
(13), we have

S(ejω) = 2π

K∑
p=1

|Ap|2δ(ω − ωp) + σ2. (14)

It has been shown in [2] that for sufficiently largeL the only
solution of (11) isWopt(z) = H(z), if P̂ (z) has the notch
characteristic

P̂ (e−jω1) = P̂ (e−jω2) = · · · = P̂ (e−jωK ) = 0 (15)

and the orderq − 1 of P̂ (z) satisfies

q − 1 ≥ K (16)

where the forward path transfer functionG(z) is set to contain
q time unit delays such that

G(z) = z−qGc(z) (17)

whereGc(z) is taken to be of minimum phase.
We introduce an adaptive filterWp(z) for frequency esti-

mation into the system, and updatêP (z). In [2], the LMS
algorithm for linear prediction fore(n) is used since at the
desired stationary pointe(n) = d(n). It has been stated in
[2] that if the order ofWp(z) is sufficiently large compared

to the number of sinusoids, then desirable unbiased feedback
cancellation can be done.

Let us consider what algorithm should be used forWp(z) in
order that at the stationary point it has the notch characteristic
with the orderq − 1 = K. Expressing the autocorrelation
matrix of e(n) by Re wheree(n) is defined by

e(n) = [e(n), e(n − 1), · · · , e(n − q + 1)]T . (18)

When e(n) = d(n), we find that the filter whose coefficients
are elements of the eigenvector corresponding to the minimum
eigenvalue ofRe has the notch characteristic to the sinusoids.
(For details see 4.5 of [5].)

If wp is the constrained unit-norm weight vector, then
minimization of the quadratic formwp

T Rewp leads to the
eigenvector corresponding to the minimum eigenvalue ofRe

by the method of Lagrange multipliers. The adaptive algorithm
is obtained by calculating the gradient of the squared output
with respect to the unnormalized weight vectorwr, where

wp =
wr

‖wr‖
, ‖wp‖ = 1. (19)

The resulting constrained LMS algorithm was derived in [4]
as

wr(n + 1) = wr(n) − µp

[
e(n)γ̂(n)
‖wr(n)‖

− wr(n)γ̂(n)2

‖wr(n)‖2

]

wp(n) =
wr(n)
‖wr(n)‖

(20)

where µp is the positive step size. The tap vectorswp(n),
wr(n) are the estimates ofwp, wr with

wp(n) = [wp0(n), wp1(n), · · · , wp(q−1)(n)]T (21)

wr(n) = [wr0(n), wr1(n), · · · , wr(q−1)(n)]T , (22)

and the output error̂γ(n) is

γ̂(n) = wp0(n)e(n) + · · · + wp(q−1)(n)e(n − q). (23)

We set as

Wr(z) = wr0 + wr1z
−1 + · · · + wr(q−1)z

−q+1, (24)

andWp(z) can be expressed asWp(z) = Wr(z)/‖wr‖. Since
at the stationary point, the coefficients ofWr(z) correspond
to the eignvector associated with the minimum eigenvalue of
Re, we updateP̂ (z) as

P̂ (z) = Wr(z). (25)

Thus, by using the constrained LMS algorithm for the adaptive
filter for frequency estimation, we can makêP (z) to have the
notch characteristic with the orderq−1 ≥ K at the stationary
state.
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III. STABILITY OF THE FEEDBACK CANCELLATION

ALGORITHM

Here stability analysis near the desired stationary point is
presented when bothW (z) andWp(z) are operating. For (6)
and (20) the averaged system is given by[

w̄(n + 1)
w̄r(n + 1)

]
=

[
w̄(n)
w̄r(n)

]
− µE

[
−x′(n)e′(n)

e(n)γ̂(n)
‖wr(n)‖ − wr(n)γ̂(n)2

‖wr(n)‖2

]
(26)

where for simplicity we setµ = µp. The above discrete-time
system can be approximated by the continuous-time linear
system near the stationary point as

d
dt

[
w̄(t)
w̄r(t)

]
= −Φ

([
w̄(t)
w̄r(t)

]
−

[
wopt

wropt

])
(27)

whereΦ is[
∂

∂wE[−x′(n)e′(n)] ∂
∂wr

E[−x′(n)e′(n)]
∂

∂w E[e(n)γ̂(n)
‖wr‖ − wr γ̂(n)2

‖wr‖2 ] ∂
∂wr

E[e(n)γ̂(n)
‖wr‖ − wr γ̂(n)2

‖wr‖2 ]

]
∣∣∣∣∣
wopt,wropt

def=
[

A B
C D

]
. (28)

From Lyapunov stability theory, ifΦ+ΦT is positive definite
then the adaptive filters are stable near their stationary points.
The l-th element ofE[x′(n)e′(n)] is expressed as (12), and
the l-th element ofE[e(n)γ̂(n)

‖wr‖ − wr γ̂(n)2

‖wr‖2 ] is

1

2π

∫ π

−π

|Q(z)|2S(z−1)Wr(z)

(
zl

‖wr‖2
− wrlWr(z

−1)

‖wr‖4

)
dω.

(29)

At the stationary point,W (z) is Wopt(z) = H(z) and from
(5) we have

Q(z) = 1, (30)

and Wr(z), Wp(z) are Wr,opt(z) = P̂opt(z), Wp,opt(z) =
Wr,opt(z)/‖wropt‖ respectively whereWp,opt(z), Wr,opt(z)
and P̂opt(z) have the notch characteristic in (15).

We first calculate the blockA in the following. The(l, k)-th
element ofA is

Alk =
−∂

∂wk

∫ π

−π

zlG(z−1)

2π

∣∣Q(z)P̂ (z)
∣∣2 S(z−1)dω

∣∣∣∣∣
wopt,wropt

(31)

where l = 0, · · · , L − 1, and k = 0, · · · , L − 1. Partial
differentiating and using (14), (17) and (30), we have

Alk =
σ2

2π

∫ π

−π

zl+k+2qG2
c(z

−1)|P̂opt(z)|2dω

+
σ2

2π

∫ π

−π

zl−k |Gc(z)|2 |P̂opt(z)|2dω. (32)

The functionzl+k+2qG2
c(z

−1)|P̂opt(z)|2 can be expanded in
positive powers ofz. So, the first term of RHS of (32) is0.
Hence,Alk is

Alk =
σ2

2π

∫ π

−π

zl−k |Gc(z)|2 |P̂opt(z)|2dω. (33)

We next calculate the blockB in the following. The(l, k)-th
element ofB is

Blk =
−∂

∂wrk

∫ π

−π

zlG(z−1)

2π
|Q(z)|2S(z−1)|Wr(z)|2dω

∣∣∣∣∣
wopt,wropt

(34)

where0 ≤ l ≤ L−1 and0 ≤ k ≤ q−1. Partial differentiating
and using (14), (17) and (30), we have

Blk = −σ2

2π

∫ π

−π

zl+q+kGc(z−1)Wr,opt(z)dω

− σ2

2π

∫ π

−π

zl+q−kGc(z−1)Wr,opt(z−1)dω.

(35)

Noting that the order ofWr,opt(z) is q − 1, the function
zl+q+kGc(z−1)Wr,opt(z) can be expanded in positive powers
of z, and so the first term of RHS is0. Noting thatk ≤ q−1,
the functionzl+q−kGc(z−1)Wr,opt(z−1) can be expanded in
positive powers ofz, and so the second term of RHS is0.
Hence,

Blk = 0. (36)

We then calculate the blockC in the following. The(l, k)-th
element ofC is

Clk =
∂

∂wk

1
2π

∫ π

−π

|Q(z)|2S(z−1)Wr(z)×(
zl

‖wr‖2
− wrlWr(z

−1)

‖wr‖4

)
dω

∣∣∣∣∣
wopt,wropt

(37)

where0 ≤ l ≤ q−1 and0 ≤ k ≤ L−1. Partial differentiating
and using (14), (17) and (30), we have

Clk = −σ2

2π

∫ π

−π

z−k−q+lGc(z)Wr,opt(z)
‖wropt‖2

dω

+
σ2

2π

∫ π

−π

wrl,optGc(z)|Wr,opt(z)|2z−k−q

‖wropt‖4
dω

− σ2

2π

∫ π

−π

zk+q+lGc(z−1)Wr,opt(z)
‖wropt‖2

dω

+
σ2

2π

∫ π

−π

wrl,optGc(z−1)|Wr,opt(z)|2zk+q

‖wropt‖4
dω. (38)

Noting that l ≤ q − 1 and the order ofWr,opt(z)
is q − 1, the functions z−k−q+lGc(z)Wr,opt(z) and
Gc(z)|Wr,opt(z)|2z−k−q can be expanded in negative powers
of z, and so the first and second terms of RHS are0.
Noting that the order ofWr,opt(z) is q − 1, the functions
zk+q+lGc(z−1)Wr,opt(z) and Gc(z−1)|Wr,opt(z)|2zk+q can
be expanded in positive powers ofz, and so the third and
fourth terms of RHS are0. Hence,

Clk = 0. (39)

From (36) and (39) it is seen that two adaptive filters are
decoupling near the stationary point.
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We finally calculate the blockD in the following. The(l, k)-
th element ofD is

Dlk =
∂

∂wrk

1
2π

∫ π

−π

|Q(z)|2S(z−1)Wr(z)×(
zl

‖wr‖2
− wrlWr(z−1)

‖wr‖4

)
dω

∣∣∣∣∣
wopt,wropt

(40)

where0 ≤ l ≤ q−1 and0 ≤ k ≤ q−1. Partial differentiating
and using (14), (17) and (30), we have

Dlk=

K∑
p=1

|Ap|2
ejωp(k−l)

‖wropt‖2

+
σ2

2π

∫ π

−π

zl

(
−2wrk,optWp,opt(z)

‖wropt‖3
+

z−k

‖wropt‖2

)
dω

−σ2

2π

∫ π

−π

{(
δ(l − k)

‖wropt‖2
− 4wrl,optwrk,opt

‖wropt‖4

)
|Wp,opt(z)|2+

wrl,opt

‖wropt‖3

(
Wp,opt(z

−1)z−k + Wp,opt(z)zk
)}

dω. (41)

By calculating the integrals in (41) and using (19), we see that
the second and third terms cancell. HenceDlk becomes

Dlk =
K∑

p=1

|Ap|2
ejωp(k−l)

‖wropt‖2
. (42)

Hence, from (33), (36), (39) and (42) the Hermitian form of
Φ is

[
ξH ηH

]
Φ

[
ξ
η

]
=

σ2

2π

∫ π

−π

( ∣∣∣∣∣
L−1∑
i=0

ξiz
−i

∣∣∣∣∣
2

|Gc(z)|2×

|P̂opt(z)|2
)

dω +
K∑

p=1

|Ap|2

‖wropt‖2

∣∣∣∣∣
q−1∑
i=0

ηie
jωpi

∣∣∣∣∣
2

. (43)

The blockA for W (z) is positive definite, soW (z) is stable
as in [2]. But, the blockD for Wr(z) is positive semidefinite.
From the second term of RHS of (43) we see that all vectors
η 6= 0 such thatηHDη = 0 correspond to the coefficient
vector satisfying (15). This means that the adaptive filter
Wp(z) has the desired notch characteristic whenever it stops.
Hence, the proposed algorithm is stable for the desirable
characteristic althoughΦ is positive semidefinite.

IV. SIMULATION RESULTS

To see the validities of the theoretical findings in previous
sections, some simulation results are presented.

First, we present results for sinusoidal signals. We use
the following misalignment as the performance indexζh =∑L−1

i=0 (hi −wi)2/
∑L−1

i=0 hi
2. The feedback and forward path

transfer functions are set toH(z) = 0.2z−1 and G(z) =
2.0z−q respectively. For the adaptive filterW (z) we set the
tap weight length toL = 2 and the step size toµ = 1.0×10−3.
The adaptive filterWp(z) is (q − 1)-th order and its step size
is µp = 1.0× 10−2. Referring to (13),ν(n) is Gaussian i.i.d,
with zero mean and varianceσ2 = 0.01. In Fig.2 it is a sum
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Fig. 2. Plots of misalignmentζh in the case whereK = 4 andq = 5.
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Fig. 3. Plots of misalignmentζh in the case where the input is actual music
signal andq = 100.

of two sinusoids withK = 4, A1 = A2 = A3 = A4 = 1/2,
ω1, ω2 = ±π/4, ω3, ω4 = ±π/7, and q is set to5. When
the LMS algorithm for linear prediction is used, the misalign-
ment does not converge at all. As for the constrained LMS
algorithm, the desired convergence is obtained.

Second, we present results for actual music signal. Fig.3
shows the results whereL = 5, Gc(z) = 3, andq = 100 with
µp = 10−2 andµ = 10−2. It is seen that the algorithm with
the constrained LMS performs a little bit better than the LMS
for linear prediction.

V. CONCLUSION

In this paper we have presented convergence analysis of the
modified LMS-type algorithm for hearing aids with sinusoidal
input signal. It has been shown that the adaptive filters have
the desired stationary points and the stabilities near the points.
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