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Abstract—Analysis of coupling effects in adaptive filters is

to ear Signal

presented for feedback cancellation systems in hearing aids. As w|  FeedbackPath .|,
the incoming signal, a sum of sinusoids in white noise is assumed ) ‘(")
in this paper. In the proposed scheme two LMS-type adaptive Adaptive Filter | y(n)

filters are used. The one is set for identifying the impulse response
of the feedback path. The other is associated with frequency
estimation. We propose a scheme using the constrained LMS
algorithm for the adaptive filter for frequency estimation. The

e(n) Adaptive Filter
7 ()

Wp(z) .
L] The Constrained
LMS

stationary point of the proposed algorithm is shown to be the G()

desired ones. We also show that the simultaneous stability near Forward Path

the stationary point is guaranteed. Simulation results show the

validity of the theoretical findings. Fig. 1. Block diagram of the proposed algorithm for feedback cancellation

Il. THE STATIONARY POINT OF THE PROPOSED
I. INTRODUCTION SCHEME

Fig.1 shows a block diagram of the proposed scheme. An
In hearing aids an adaptive filter is used to model tHeput signal to the hearing aids is denoted &) and an
feedback path from the receiver (speaker) to the microphoa@plified output signal from the receiver is denotedaigy).
and cancels its effect. The conventional LMS algorithm iEhe transfer functions of the forward path (amplifying circuit)
biased, since the input signal and the incoming signal whiéid the feedback path ate(z) and H(z), respectively. The

acts as observation noise in the adaptive filter are correlafe@ward path transfer functio&'(z) is the desired characteris-
due to the feedback path. tic of the hearing aids and is fixed and known, B{ifz), the

In [1], the PEM-AFC (Prediction Error Method-based Adaplfansfer function of feedback path, is unknown and may be
tive Feedback Canceller) algorithm has been proposed for cSIRWIY time-varying. So, the adaptive filter which is denoted
tinuous unbiased cancellation for the case where the incoming Y (?) is used to identifyff (z).
signal is an AR (autoregressive) process. But its convergencd "€ Signalsz(n) ande(n) in Fig.1 in the steady state are

mechanism to the desired point was not discussed. written by

In [2], under an assumption that the incoming signal is a z(n) = G(z)e(n) (1)
sum of sinusoids and white noise, a similar algorithm with e(n) =y(n) — W(z2)z(n)
two LMS-type adaptive filters was proposed where the one is = d(n) + G(2)(H(2) — W(2))e(n), @)

to identify the feedback path and the other is associated with _

estimation of frequencies. For the latter the LMS algorithm féind W (z) and H(z) are given by

linear prediction is used. The stabi_lity analysis of the former W(z) = wo +wiz + - +wp_gz Lt A3)
was conducted under the assumption that the latter converges H(s) = ho oo b L+l 4
to have the desired notch characteristic. (2) =ho +hz™" + -+ hp1z )

In [3], the stability analysis for simultaneous adaptatiowherez~" denotes the unit delay operator and for example,

of both adaptive filters was taken into account where tié(z)e(rn) means the filtering operation to the sigrah) by
incoming Signa| is an AR process. the transfer fUnCtiorG(Z). We also see that

In this paper, as another method of frequency estimation we _ d _ 1 5
use the constrained LMS algorithm in [4] where the order of (n) = Q2)d(n), Q) 1+ (W(z) — H(2))G(2) ©)

the filter is equal to the number of sinusoids. Also, analysighere we assume tha}(z) is stable. As in [2], we use the

for the proposed algorithm. It is shown that the coupling effeGectorw(n) is updated by

disappears near the stationary point. Finally, simulation results , ,
show the validity of the theoretical findings. w(n+1) = w(n) + px'(n)e'(n) (6)
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where is the positive step sizap(n),
sional vectors defined by

x'(n) are L dimen-

(n) = [wo(n), wi(n), - wL—l(n)]T @)

( )=[a'(n),a'(n=1),--- ' (n =L+ 1] (8)
andz’(n), €'(n) are defined by

2'(n) = P(2)a(n), ¢ (n) = P(z)e(n) 9)

where these signals are the filtered versiona6f), e(n)

by P(z), respectively. The operation)? denotes transpose
of matrices or vectors. Thi:?(z) needs to be appropriately
selected. The stationary point of the adaptive filter was d
rived by the standard averaging method. The averaged sys

corresponding to (6) is given by

@(n+1) = @(n) + pEla’ (n)e (n)). (10)
The stationary point ofo(n) is obtained by solving
E[z'(n)e'(n)] =0 (11)

with respect taw(n)
Density) of the incoming signal(n) asS(e«), from (1), (5)
and (9) thel-th element ofE[x’(n)e'(n)] is written as
T o—dlw Jw g .
(E[:E/(n)e/(N)])l _ / i ’Q Jw JUJ)| S(e7)dw.
; (12)

We assume that the incoming signél:) is a sum of K
sinusoids and white noise and express it as

K
n) = Z Ape?r™ + y(n)
p=1

wherev(n) is white noise with meaf and variancer®. From
(13), we have

(13)

K
S(e) =21 A, Po(w—w,) +o
p=1
It has been shown in [2] that for sufficiently lardethe only
solution of (11) isW,,.(z) = H(z), if P(z) has the notch
characteristic

(14)

fD(e—ju-u) — ]S(e—jwz) .= P(e—ij) -0 (15)
and the order; — 1 of P(z) satisfies
¢—1>2K (16)

where the forward path transfer functi6i(z) is set to contain
g time unit delays such that
G(z) = 271G(#)

whereG,(z) is taken to be of minimum phase.
We introduce an adaptive filtdﬂ/pgz) for frequency esti-
mation into the system, and updaigz). In [2], the LMS

(17)

= w. Denoting the PSD (Power Spectral

to the number of sinusoids, then desirable unbiased feedback
cancellation can be done.

Let us consider what algorithm should be usedigy(z) in
order that at the stationary point it has the notch characteristic
with the orderq — 1 = K. Expressing the autocorrelation
matrix of e(n) by R. wheree(n) is defined by

e(n)

Whene(n) = d(n), we find that the filter whose coefficients
are elements of the eigenvector corresponding to the minimum
igenvalue ofR. has the notch characteristic to the sinusoids.

Qr details see 4.5 of [5].)

If w, is the constrained unit-norm weight vector, then
minimization of the quadratic formw,” R.w, leads to the
eigenvector corresponding to the minimum eigenvalugrpf
by the method of Lagrange multipliers. The adaptive algorithm
is obtained by calculating the gradient of the squared output
with respect to the unnormalized weight vecioy., where

= [e(n),e(n —1),--- ,e(n—q+1)]*.  (18)

Wy

w, = 2
P

The resulting constrained LMS algorithm was derived in [4]

[wpll =1 (19)

n 1) = wy(n) — gy | CIE)  we)i()
(n+1) =wr(n) — pp [wem)] ~ lwn ()|
wn(n) = ~2r()_

P = o, ()] -

where p,, is the positive step size. The tap vectarg,(n),
wy(n) are the estimates ab,, w, with

wy (1) = [wyo(n), wpr(n), -+, wy(g—1y()]" (21)
wr(n) = [wro(n), wyi(n), - -], (22)
and the output errof/(n) is
1(n) = wyo(n)e(n) + - -+ wpg-1y(n)e(n —q).  (23)
We set as
Wi(2) = wro +wp 2™ 4+ w2 T (24)

andW,(z) can be expressed &8,(z) = W,.(z)/||w.||. Since

at the stationary point, the coefficients Bf,.(z) correspond

to the eignvector associated with the minimum eigenvalue of
R., we updateP(z) as

P(z) = W,(2). (25)

Thus, by using the constrained LMS algorithm for the adaptive

algorithm for linear prediction for(n) is used since at the filter for frequency estimation, we can mak¥z) to have the

desired stationary poing(n)

= d(n). It has been stated in notch characteristic with the order- 1 > K at the stationary

[2] that if the order of W, (%) is sufficiently large compared state.
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IIl. STABILITY OF THE FEEDBACK CANCELLATION
ALGORITHM

We next calculate the blocR in the following. The(l, k)-th
element ofB is

Here stability analysis near the desired stationary point is —o [T ek ) ) )
presented when both(z) andW,,(z) are operating. For (6) Bix = 5~ k/ o |QE)S(z)We(2) dw

and (20) the averaged system is given by

@(n+ 1) ]_ { w(n) ]_ E[ . A_a;’(n)uc;'(n)A 2 ]
i | = [ | e gt Mt

(26)

where for simplicity we sepr = p,,. The above discrete-time
system can be approximated by the continuous-time linear B =

system near the stationary point as

il = (ot ][, ]) e
where® is
[ s Bl=2' (n)e'(n)] B () )] ]
R Bl — Betla) o ple(ity _ Weat)?
T
Wopt Wy,

From Lyapunov stability theory, i® + ®7' is positive definite
then the adaptive filters are stable near their stationary points
The I-th element ofE[x’(n)e’(n)] is expressed as (12), and

the I-th element ofE[e‘(‘Z)Ji(‘r) - '“”’{J?fﬁf

2t _ w,leT(z_1)> dw

[[wr|?

lis

™

1

ﬂ —T

Q()IPS(="HWn(2) (

At the stationary pointiV(z) is W, (2) = H(z) and from
(5) we have

(30)

and W,.(z), Wp(z) are Wy opi(2) = Popt(2), Wy opt(2) =
Wi opt(2) /|| W ope]| rESPECtivEly WherdV), o, (2), Wi opt(2)
and Popt(z) have the notch characteristic in (15).
We first calculate the blocH in the following. The(l, k)-th
element ofA is
Tl -1
An =2 [ ZEE ) 100 [P S dw

oW . 2
Wopt, Wr opt

(31)
where! = 0,---,L — 1, andk = 0,---,L — 1. Partial
differentiating and using (14), (17) and (30), we have

2
g

A = —

5 ARG (7Y o (2) PPdw
™

—T

0.2 ™ B R
+%/ ZFIGe(2) [ Popi(2)[*dw.

—T

(32)

The functionz!+++24G2(2=1)| P,,(2)|?> can be expanded in

positive powers ofz. So, the first term of RHS of (32) i8.
Hence,A;;, is

a2 [T .
Aw =T [ G P Pe. (39)
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Wopt, Wr ops

(34)

where0 <[ < L—1and0 < k < ¢g—1. Partial differentiating
and using (14), (17) and (30), we have

zl+q+ch(z_1)WT,opt(z)dw

S
- ;7 /ﬁ ARG (YW o (21 dw.

(35)
Noting that the order ofiV, ,,.(z) is ¢ — 1, the function
ZHHREG (27 Y)W, ope(2) can be expanded in positive powers
of z, and so the first term of RHS i& Noting thatk < ¢—1,
the functionz!*9=*G.(2=1)W, ,p:(271) can be expanded in
positive powers ofz, and so the second term of RHS (s

Hence,
By, = 0. (36)

We then calculate the bloaK in the following. The(l, k)-th
element ofC' is

o 1 [T
‘%—&;ﬂ[ﬂ

-2

where0 <[ < ¢—1and0 < k < L—1. Partial differentiating
and using (14), (17) and (30), we have

Q(2)*S (=)W, (2) x

Con =L / T Gl on(z) g,
21 ) [ rope 2

O [ Wt Ge() W ()P
2T - HwT‘optH4

_ 12 " Zk+q+lGC(Z_1)WT,0pt(Z)dw
2m ) [0 7o

L7 o Gele DI Weap ()P g
27 ) [ewropell*

Noting that i < ¢ — 1 and the order of W, ,,(2)

is ¢ — 1, the functions z=*=9HG.(2)W, ,,i(2) and
Go(2) Wy opt (2)|?27%74 can be expanded in negative powers
of z, and so the first and second terms of RHS éare
Noting that the order ofiV, ,,.(2) is ¢ — 1, the functions
TG (7Y W, ope(2) @and Go(27 Y)Wy ope(2) 22512 can
be expanded in positive powers of and so the third and

fourth terms of RHS ar®. Hence,
Ci. = 0. (39)

From (36) and (39) it is seen that two adaptive filters are
decoupling near the stationary point.
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We finally calculate the block in the following. The(l, k)-
th element ofD is

_ 0 1 b 1
T Owyy, 27 77T|Q(Z)| Sz )We(2)x

( ! w,.lWr(z_1)> do
Wopt, Wy 4y

z
[Jwn[*
where0 <[ < ¢—1and0 < k < ¢— 1. Partial differentiating
and using (14), (17) and (30), we have

K

D= Z
p=1

T

Dy,

(40)

[ |2

6jup(k7l)

AP
S T e

_’_0'72 /ﬂ Zl (2wrk‘,opth,opt(Z) + Z_k )dw
27 —T ‘|w7’opt|l3 ||w7’opt||2
2 o
g 5(l - k) 4wy opt Wrk,opt 2
-z — HrboptWikont )y (2) P+
2wﬂ{@mmw fwrapelt ) 7Pert )
Wrl,o — —
ﬁ (Waopt (2~ )2 ™" + W opt (2)2") }dw. (41)
Topt

By calculating the integrals in (41) and using (19), we see that N N I

the second and third terms cancell. Hedeg becomes
K .
ejwp(kfl)
Dy =Y |4,
p=1

||fl‘u7‘opt||2 .

(42)
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Fig. 3. Plots of misalignmeng;, in the case where the input is actual music
signal andg = 100.

Hence, from (33), (36), (39) and (42) the Hermitian form of¢ o sinusoids withic — 4, Ay = Ay = Ay = Ay = 1/2,

P is
2

H _H 3 o " (|x= —i 2
[ '3 n } @ n = o § iz |GC(Z)| X
- i=0
K qg—1 2
. A |? S
|Popt(z)|2 dw 4 E | P‘ 5 E nieJWp'L (43)
p=1 Hw"'OPtH i=0

The block A for W (z) is positive definite, sdV (z) is stable

wi,wy = =7/4, ws,wy = £7/7, and ¢ is set to5. When
the LMS algorithm for linear prediction is used, the misalign-
ment does not converge at all. As for the constrained LMS
algorithm, the desired convergence is obtained.

Second, we present results for actual music signal. Fig.3
shows the results whete = 5, G.(z) = 3, andg = 100 with
pp = 1072 and u = 1072, It is seen that the algorithm with
the constrained LMS performs a little bit better than the LMS
for linear prediction.

as in [2]. But, the blockD for W,.(z) is positive semidefinite.
From the second term of RHS of (43) we see that all vectors
n # 0 such thatn” Dn = 0 correspond to the coefficient

vector satisfying (15). This means that the adaptive filt%['
W,(#) has the desired notch characteristic whenever it sto;lns.
Hence, the proposed algorithm is stable for the desiratfﬂ

characteristic althouglp is positive semidefinite.
IV. SIMULATION RESULTS

To see the validities of the theoretical findings in previoJé]
sections, some simulation results are presented.

First, we present results for sinusoidal signals. We ufﬁ
the following misalignment as the performance indgx =
S (hi —wi)?) Y1, hi?. The feedback and forward pathi3]
transfer functions are set tél(z) = 0.227! and G(z) =
2.0279 respectively. For the adaptive filté¥ (z) we set the 4
tap weight length td. = 2 and the step size to = 1.0x1073.

The adaptive filtedV),(z) is (¢ — 1)-th order and its step size
is 1, = 1.0 x 1072, Referring to (13)(n) is Gaussian i.i.d,
with zero mean and variane€® = 0.01. In Fig.2 it is a sum

(5]

433

V. CONCLUSION

In this paper we have presented convergence analysis of the
0

dified LMS-type algorithm for hearing aids with sinusoidal

é)ut signal. It has been shown that the adaptive filters have
e desired stationary points and the stabilities near the points.
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