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Abstract—This paper presents an acoustic compensation
method in body-conducted speech conversion that automati-
cally compensates for acoustic differences caused by changes
in recording conditions. An enhancement process for body-
conducted speech recorded with a Non-Audible Murmur (NAM)
microphone has successfully applied a statistical voice conver-
sion technique. Speech waveforms are generated from acoustic
parameters of normal speech estimated from those of body-
conducted speech with a conversion model previously trained
using stereo data of those two types of speech. This framework
suffers from mismatched conditions between training and con-
version processes. To alleviate this issue, an unsupervised acoustic
compensation method based on constrained maximum likelihood
linear regression (CMLLR) has been proposed and its effective-
ness has been reported in the compensation of acoustic differences
caused by attachment location of the NAM microphone. This
paper further applies the CMLLR-based acoustic compensation
method to the compensation of acoustic differences caused by
different recording devices and evaluates its effectiveness. The
experimental results demonstrate that the proposed method
effectively reduces quality degradation and converted speech
caused by differences in recording devices as well as attachment
location of the NAM microphone.

I. INTRODUCTION
Recently cellular phones have enabled us to communicate

with each other conveniently. However, noisy environments
such as a crowd make it difficult to smoothly convey speech.
To address this issue, the use of body-conducted speech
for speech communication [1], [2] has been proposed. A
Non-Audible Murmur (NAM) microphone[2], that is a body-
conductive microphone, is placed on the neck below the
ear and detects various types of speech such as non-audible
murmurs, whispers, and normal speech through the soft tissue
of the head. This approach is robust against external noise due
to the noise-proof structure of body-conductive microphones.
However, body-conducted speech causes severe quality degra-
dation due to essential mechanisms of body conduction such as
the lack of radiation characteristics from lips and the influence
of the low-pass characteristics of soft tissue.
To improve the quality of body-conducted speech, body-

conducted voice conversion has been proposed [3]. This tech-
nique is based on statistical voice conversion techniques [4],
[5]. A conversion model is trained in advance using a par-
allel data set consisting of utterance-pairs of body-conducted
speech and normal speech (i.e., air-conducted speech) uttered
by the same speaker. A Gaussian mixture model (GMM) of
joint probability density of speech parameters of those two
types of speech is effectively used as the conversion model.

The trained model is capable of converting body-conducted
speech parameters into normal speech parameters without the
use of linguistic information.
One weakness of body-conducted voice conversion is that

severe quality degradation of the converted speech is caused
by mismatched acoustic conditions between training and con-
version. The recording of body-conducted speech with a
NAM microphone is sensitive to various conditions such as
the attachment location of the NAM microphone, settings
of the amplifier, the type of NAM microphone, and so on.
In the practical use of a NAM microphone, it is almost
impossible to keep these conditions consistent. Moreover, the
NAM microphone is still under development and various types
of recording devices would may be developed. Therefore, it
techniques for compensating for acoustic differences of body-
conducted speech caused by changes of various recording
conditions must be developed.
In our previous work [6], an acoustic compensation method

based on constrained maximum likelihood linear regression
(CMLLR) [7] has been proposed to compensate for acoustic
differences caused by a change in the attachment location of
the NAM microphone. This method estimates feature-space
transforms for compensating for the acoustic differences in
a completely unsupervised manner using only the acoustics
of body-conducted speech. It is worthwhile to investigate the
effectiveness of this method in various recording conditions
beyond simply changing the location of the NAM microphone.
In this paper, we apply the CMLLR-based acoustic com-

pensation method to the compensation of acoustic differences
caused by different recording devices. Three different types
of NAM microphone and their own amplifiers are used for
recording body-conducted speech. The experimental results
demonstrate that the proposed compensation method is effec-
tive for compensating the acoustic differences caused by the
different recording devices as well as the different attachment
location of NAM microphone.

II. BODY-CONDUCTED SPEECH
Body-conducted speech has a different spectral structure

from that of air-conducted speech [6]. In particular, higher fre-
quency components of body-conducted speech are severely at-
tenuated. Consequently body-conducted speech usually sounds
muffled.
In this paper, three types of different NAM microphone and

their own amplifiers shown in Figure 1 are used for recording
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(a)

(b)

(c)
Fig. 1. Three types of NAM microphone, (a) wired-type with neckband,
(b) wired-type without neckband, and (c) wireless-type, and an example of
spectrogram of body-conducted speech recorded with each NAM microphone.

body-conducted speech. The use of different types of NAM
microphone and their amplifiers causes noticeable changes in
the acoustic features of body-conducted speech. These acoustic
changes are caused by differences in various conditions such
as the attachment location of the NAM microphone and the
way of attaching the NAM microphone on the body as well
as differences the recording device.

III. BODY-CONDUCTED SPEECH CONVERSION
A. Feature Extraction of Body-Conducted Speech
As a source feature, we employ a spectral segment vector.

Let xt is a mel-cepstral vector at a frame t. We construct
a concatenated vector ct = [x�t−n · · ·x�t · · ·x�t+n]� over the
current ±n frames, where the symbol � indicates transpose.
And then, the spectral segment vector Xt at frame t is
extracted by PCA as follows:

Xt = Dct − d, (1)
where D is the transformation matrix of PCA, and d = Dc̄.
The vector c̄ is the mean vector of ct within all training data
for PCA.
As a target feature, we employ the joint static and dynamic

feature vector Yt = [y�t Δy�t ]�, where yt is the static mel-
cepstral vector, and Δyt is the delta mel-cepstral vector of the
target data at frame t.

B. Feature Conversion Based on Maximum Likelihood Esti-
mation of Parameter Trajectory [5]
The joint probability density of the source and target feature

vectors is modeled by a GMM as follows:

P (Zt|λ) =
M∑

m=1

wmN (Zt;μ(Z)
m ,Σ(ZZ)

m ), (2)

where Zt is the joint feature vector Zt = [X�
t Y �

t ]�. The
symbol N () indicates the normal distribution. The number
of mixture components is M . λ is the model parameter set
including wm, μ

(Z)
m , and Σ(ZZ)

m , which are the weight, mean
vector, and covariance matrix of the m-th mixture component,
respectively. μ(Z)

m and Σ(ZZ)
m are represented by

μ(Z)
m =

[
μ

(X)
m

μ
(Y )
m

]
, (3)

Σ(ZZ)
m =

[
Σ(XX)

m Σ(XY )
m

Σ(Y X)
m Σ(Y Y )

m

]
, (4)

where the matrices Σ(XX)
m and Σ(Y Y )

m are the covariance
matrix of the m-th mixture component of the source and that
of the target, respectively. The matrices Σ(XY )

m and Σ(Y X)
m are

the cross covariance matrices of the m-th mixture component
between the source and target. These covariance matrices are
completely full.
Let X = [X�

1 ; · · · ; X�
T ]� and Y = [Y �

1 ; · · · ; Y �
T ]�

be time sequences of the source and the target features,
respectively. The converted static feature vector sequence is
determined so that the following approximated conditional
probability density is maximized.

P (Y |X,λ) � P (m|X, λ)P (Y |X, m, λ), (5)
where m = {m1, · · · , mT } is a mixture component
sequence. First, suboptimum mixture component sequence m̂
is determined by

m̂ = arg max
m

P (m|X,λ). (6)

And then, the converted static feature vector ŷ is obtained by

ŷ = arg max
y

P (Y |X, m̂, λ), (7)

subject to Y = Ey,

where E is a window matrix to extend the static feature
vector sequence into the joint static and dynamic feature vector
sequence. Furthermore, the quality of the converted voice is
dramatically improved by considering the global variance of
the converted feature [5].

IV. UNSUPERVISED ACOUSTIC COMPENSATION METHOD
BASED ON CMLLR

To compensate for the acoustic differences caused by
changes in recording conditions, the CMLLR-based unsuper-
vised adaptation method [6] is adopted. In this method, to
effectively reduce the mismatch between the model and the
adaptation data, the CMLLR transform is estimated using only
body-conducted speech and the previously trained GMM of
joint probability density.
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We apply the CMLLR transformation to the source features
to compensate for their acoustic variations. The transformed
source feature vector is given by

X̂t = AXt + b = Wξ(t), (8)
where W is the extended transform, [b A], and ξ(t) is the
extended source feature vector, [1 X�

t ]�.
To perform unsupervised compensation, the CMLLR trans-

form is estimated so that the likelihood of the marginal
distribution for the adaptation source dataX = [X1, · · · , XT ]
is maximized as follows:

Ŵ = arg max
W

T∏
t=1

∫
P (Xt, Yt|W , λ)dYt. (9)

Because the probability density is modeled by a GMM, EM
algorithm is employed. In each M-step, an iterative row-by-
row update is performed for determining the updated transfor-
mation matrix [7], [8]. The i-th row vector of Ŵ is given by

wi = (αci + k(i))G(ii)−1, (10)
where ci is the extended cofactor row vector of A and α is
found by solving a quadratic equation [7]. k(i) and G(i) are
given by

G(ij)=
M∑

m=1

pm(i, j)
T∑

t=1

γm(t)ξm(t)ξm(t)�, (11)

k(i)=
M∑

m=1

pm(i)μm

T∑
t=1

γm(t)ξm(t)�−
d∑

j=1,j �=i

wjG
(ij), (12)

where pm(i) and pm(i, j) are the i-th row vector and the
(i, j)-th element of the inverse covariance matrix Σ(XX)−1

m ,
respectively. γm(t) is the posterior probability of the m-th
mixture component given Xt.
When applying the CMLLR transformation in the model-

space, the adapted model parameters are given by

μ̂(Z)
m =

[
A′μ(X)

m − b′

μ
(Y )
m

]
, (13)

Σ̂
(Z)

m =

[
A′Σ(XX)

m A′� A′Σ(XY )
m

Σ(Y X)
m A′� Σ(Y Y )

m

]
, (14)

where μ̂
(Z)
m and Σ̂(Z)

m are the adapted mean vector and co-
variance matrix of the m-th mixture component, respectively.
Note that A′ = A−1 and b′ = A′b. A global transform is used
in this paper.

V. EXPERIMENTAL EVALUATIONS
A. Experimental Conditions
Body-conducted speech and air-conducted speech uttered

by one Japanese male speaker were simultaneously recorded
with a NAM microphone and a headset microphone. Using
each type of NAM microphone and its amplifier shown in
Figure 1, 100 phoneme-balanced sentences were recorded.
Consequently, three sets of parallel data of body-conducted
speech (a, b, and c) and air-conducted speech (A, B, and
C) were developed. Because each data set was recorded in
a different recording session, the voice quality of the recorded
speech samples were slightly different from each other. Fifty

TABLE I
SEVERAL CONDITIONS EVALUATED IN EXPERIMENTS. BODY-CONDUCTED
SPEECH (a, b, AND c) AND AIR-CONDUCTED SPEECH (A, B, AND C) ARE
SIMULTANEOUSLY RECORDED IN THREE DIFFERENT CONDITIONS USING

DIFFERENT RECORDING DEVICES ((a), (b), AND (c) IN FIGURE 1)

Condition
Parallel data set
in training

Body-conducted speech
in conversion

Fully-matched
a-A a
b-B b
c-C c

Mismatched
a-A b or c
b-B a or c
c-C a or b

Adapted
a-A b or c (adapted to a)
b-B a or c (adapted to b)
c-C a or b (adapted to c)

Matched

a-B a
a-C a
b-A b
b-C b
c-A c
c-B c

sentences were used for training or adaptation and the remain-
ing fifty sentences were used for conversion in each data set.
By changing data sets used in training and in conversion,

various conditions were evaluated as shown in Table I. Three
conversion models were independently built using three par-
allel data sets (a-A, b-B, and c-C). In the ”Fully-matched”
condition, the same data sets used in training were also used
in conversion. Therefore, not only the recording conditions but
also the recording sessions were consistent between training
and conversion. In this condition, three sets of converted
speech were generated. In the ”Mismatched” condition, dif-
ferent data sets were used in conversion. Consequently, six
sets of converted speech were generated. Acoustic differences
caused by changes in various recording conditions such as
different recording devices and different attachment locations
of the NAM microphone were observed in this condition. In
the ”Adapted” condition, the proposed method was used to
compensate for these differences. Again, six sets of converted
speech were generated. Moreover, to show ideal results in
the proposed compensation framework, the other conversion
models were also trained using parallel data sets consisting of
body-conducted speech and air-conducted speech recorded in
different sessions. The other models were then used to convert
the body-conducted speech recorded in the same session as
used in training. This was called the ”Matched” condition
and again six sets of converted speech were generated. In
this condition, there were some differences of voice quality in
target air-conducted speech between training and conversion
due to the different recording sessions.
The 0-th through 16-th mel-cepstral coefficients were

adopted as a spectral parameter. As the input feature, a 34-
dimensional spectral segment feature vector was extracted by
PCA from a concatenated vector consisting of current and ± 4
frames of mel-cepstrum vectors. The sampling frequency was
set to 8 kHz. The number of mixture components of GMM
was set to 32. The frame shift was set to 5 ms.
In the objective evaluation, we evaluated spectral conversion

accuracy with mel-cepstral distortion calculated from the first
through 16-th mel-cepstral coefficients between the converted
and target mel-cepstra. Converted speech samples in four con-
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Fig. 2. Mel-cepstral distortion as a function of the number of adaptation
sentences.

ditions as shown in Table I were evaluated. In the ”Adapted”
condition, the number of adaptation sentences was set to 1, 2,
4, 8, 16, or 32, which were used for estimating the CMLLR
transform.
In subjective evaluation, we conducted an opinion test of

speech quality. An opinion score was set to a 5-point scale (1:
bad - 5: excellent). Seven listeners evaluated the sound quality
of six types of converted speech: under the ”Mismatched”
condition; under the ”Adapted” condition when using 2, 8,
or 16 adaptation sentences; under the ”Matched” condition,
and under the ”Fully-matched” condition. For each listener,
18 sentences were randomly selected from the test set and
108 samples of the converted speech were evaluated in total.

B. Experimental Results
Figure 2 shows the results of the objective evaluation.

A large mel-cepstral distortion is observed in the converted
speech under the ”Mismatched” condition. This result shows
that body-conducted voice conversion is very sensitive to the
recording conditions. This degradation of conversion accuracy
is effectively alleviated by the proposed acoustic compensation
method, i.e., the ”Adapted” condition. Even if only one
sentence is used for adaptation, mel-cepstral distortion signif-
icantly decreases compared with the ”Mismatched” condition.
Mel-cepstral distortion gradually decreases according to an
increase in the amount of adaptation data up to around 8 sen-
tences which is close to an ideal result shown in the ”Matched”
condition. Note that the difference between ”Matched” and
”Fully-matched” is caused by the voice quality difference
between different recording sessions.
Figure 3 shows the results of the subjective evaluation.

We can see that changes of the recording devices and the
attachment location of NAM microphone cause significant
quality degradation. Our proposed compensation method effec-
tively improves the converted speech quality. The use of only
8 adaptation sentences makes the converted speech quality
equivalent to that in the ”Matched” condition. We can also
see a significant quality difference between the ”Matched” and
”Fully-matched” conditions. These results are consistent with
those observed in the objective evaluation.

Fig. 3. Result of opinion test on speech quality.

VI. CONCLUSION
This paper described an unsupervised acoustic compen-

sation method based on CMLLR in body-conducted voice
conversion to compensate for acoustic differences caused by
different recording conditions. The proposed method has been
applied to body-conducted voice conversion in mismatched
conditions caused by the use of different recording devices
as well as a change in the attachment location of a NAM
microphone. The experimental results from both objective
and subjective tests have demonstrated that the proposed
compensation method is capable of effectively alleviating
performance degradation in body-conducted voice conversion
under mismatched conditions using only a few adaptation
sentences.
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