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Abstract—This paper proposes a high-efficiency video com-
pression framework based on a highly flexible hierarchy of
unit representation which includes three block concepts: coding
unit (CU), prediction unit (PU), and transform unit (TU). This
separation of the block structure into three different concepts
allows each to be optimized according to its role; the CU is a
macroblock-like unit which supports region splitting in a manner
similar to a conventional quadtree, the PU supports non-square
motion partition shapes for motion compensation, while the
TU allows the transform size to be defined independently from
the PU. Several other coding tools are extended to arbitrary
unit size to maintain consistency with the proposed design, e.g.
transform size is extended up to 64×64 and intra prediction is
designed to support an arbitrary number of angles for variable
block sizes. The video codec described in this paper was a
candidate in the competitive phase of the High-Efficiency Video
Coding (HEVC) standardization work. Compared to H.264/AVC,
it demonstrated bit-rate reductions of around 40% based on
objective measures and around 60% based on subjective testing
with 1080p sequences. It has been partially adopted into the first
standardization model of the collaborative phase of the HEVC
effort.

I. INTRODUCTION

With the ever increasing popularity of high-definition (HD)
video content, video compression technologies which can
provide higher coding efficiency than existing video coding
standards, e.g. state-of-the-art H.264/AVC [1], have received
increased attention. To meet the growing demand, recently,
ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11
(MPEG) created a Joint Collaborative Team on Video Coding
(JCT-VC), and jointly issued a Call for Proposals (CfP)
on video compression technology called the High-Efficiency
Video Coding (HEVC) [2]. The coding performance reported
in a few responses to the CfP was already significantly higher
than that of the H.264/AVC, and the video codec described
in this paper was one of the best performing candidates in
terms of both objective and subjective performance measures
[3]. The proposed video codec could achieve high coding
efficiency by using highly flexible unit representation and the
novel coding tools adapted to the flexibility. In this paper,
we focus on the flexible unit representation which is the key

concept of the proposed codec. The interested readers can refer
to our response to the CfP [4], for the details of other coding
tools.

Motion compensation is one of the key modules in hybrid
video codec. Fixed-size block motion compensation (FSBMC)
methods assume that each block of pixels possesses the
same translational motion and compensate the motion of a
frame block by block with same size. However, since the
boundaries of the moving objects seldom coincide with the
block boundaries in a real image sequence, these methods
result in poor prediction performance. Variable-size block
motion-compensation (VSBMC) techniques were proposed to
alleviate this problem [5]–[7]. In the VSBMC techniques, a
frame is divided into fixed-size blocks, and then each block is
further split and merged iteratively. The VSBMC techniques
usually utilize a quadtree to represent the variable-size block
structure. The quadtree structure for the blocks is generated by
considering the tradeoff between prediction error and overhead
for side information [8].

Early video coding standards such as MPEG-1 [9] and
MPEG-2 [10] employ FSBMC method with a macroblock
size of 16×16. In the H.264/AVC [1], this macroblock size
is retained but with the addition of a depth-2 quadtree, which
significantly improves coding efficiency. However, it has been
observed that the maximum 16×16 block size is too small
when applied to high resolution video and causes inefficiency
[11], [12]. To solve this problem, recent VCEG proposals have
extended the maximum motion block size up to 64×64 by
adding additional large motion block modes on top of the
conventional 16×16 H.264/AVC macroblock syntax [13]–[15].

Although those approaches suggested that the coding effi-
ciency for the high resolution video materials can be improved
by providing a better tradeoff between prediction performance
and side information, they simply tried to add the large
size motion partition while maintaining the existing 16×16
macroblock sizes, which imposes restrictions on the flexibility
of the quadtree structure.

This paper describes a video compression framework where
the whole codec has been designed to exploit flexible block
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Fig. 1. Illustration of recursive CU structure (LCU size = 128, maximum
hierarchical depth = 5).

sizes. A highly flexible hierarchical structure based on the
generic quadtree scheme is defined by three independent
block concepts: coding unit (CU), prediction unit (PU), and
transform unit (TU). CU is the basic unit of region splitting.
CU is analogous to the concept of macroblock, but it does
not restrict the maximum size and it allows recursive splitting
into four equal size CUs to improve the contents-adaptivity.
PU is the basic unit of inter/intra prediction and it may
contain multiple arbitrary shape partitions in a single PU to
effectively code irregular image patterns. TU is the basic unit
of transform. It can be defined independently from the PU,
however, its size is limited to the CU which the TU belongs
to. This separation of the block structure into three different
concepts allows each to be optimized according to its role,
which results in the improved coding efficiency.

From these unit definitions, all coding processes can be de-
fined in a very consistent way; large block sizes are supported
in both motion compensation and intra prediction schemes,
prediction mode switching is allowed at any block sizes and
spatial transforms larger than 16×16 are also supported in
both inter and intra coded blocks. Due to this consistency,
every syntax element can be defined in exactly the same way
independent of the unit sizes, which makes the specification
and parsing process much simpler than would be the case
with an extension scheme on top of a conventional 16×16
macroblock syntax.

The rest of this paper is organized as follows. Section II
provides the details of the proposed flexible unit represen-
tation. Section III briefly introduces the coding tools of the
proposed video codec which include those for inter/intra-frame
prediction, spatial transform, in-loop filtering, and entropy
coding. Section IV summarizes the coding efficiency of the
proposed codec based on the objective and subjective results.
Finally, Section V concludes the paper.
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Fig. 2. Supported PU splittings according to each prediction mode.

II. FLEXIBLE UNIT REPRESENTATION

For efficient and flexible representation of video content
with various resolutions, a triplet of coding unit (CU), predic-
tion unit (PU), and transform unit (TU) are introduced. The
following subsections describe the details of each unit.

A. Coding unit (CU)

The picture is divided into slices, with each slice composed
of a sequence of largest coding units (LCUs). The LCU size is
specified in the Sequence Parameter Set (SPS) or slice header;
the optimum LCU size is dependent on the application.

The LCU can be divided into four CUs by a 1-bit syn-
tax, split flag. Each split CU can be divided into four CUs
recursively up to the maximum allowed hierarchical depth,
also specified in the SPS or slice header. For example, if
LCU size is equal to 128 and the maximum hierarchical
depth is equal to 5, then 5 kinds of CU sizes are possible:
128×128 (LCU), 64×64, 32×32, 16×16, and 8×8 which
is the smallest CU (SCU). If LCU size is equal to 16 and
the maximum hierarchical depth is equal to 2, then 16×16
(LCU) and 8×8 (SCU) are possible; this is a block structure
similar to the H.264/AVC. Fig. 1 shows an example of the
recursive CU structure where the LCU size is 128 and the
maximum hierarchical depth is 5. In the proposed video codec,
the three syntax elements, LCU size, maximum hierarchical
depth and split flags, completely specify the generic multi-
depth quadtree.

B. Prediction unit (PU)

Coupled with CU, this paper introduces a basic unit for
prediction: the prediction unit (PU). The PU is defined only
for the leaf node CU which is not split in quadtree structure,
and the size of the PU is limited to that of the CU. The
prediction method is specified by the prediction mode and the
PU splitting. As with H.264/AVC, the prediction mode can be
one of the values among skip, intra, and inter. Fig. 2 shows
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different PU splitting strategy for a CU of size 2N×2N, which
is dependent on the property of each prediction mode.

Skip mode can be thought of as a special inter mode in
which no motion vector and residue information are trans-
mitted. Typically it is used in an area of the image with
smooth motion, thus no further splitting is necessary and only
2N×2N partition is used. For the normal inter mode, a set
of 8 splitting options are defined to cover possible motion
boundaries inside the PU. Given a PU of size 2N×2N, 4
symmetric splittings (2N×2N, 2N×N, N×2N, N×N) and 4
asymmetric splittings (2N×nU, 2N×nD, nL×2N, nR×2N) are
defined. The asymmetric PU splittings are included in the
design to improve the coding efficiency for the irregular object
boundaries, which otherwise would be constrained to being
represented less efficiently by further CU splittings to the
deeper depth. For the intra mode, only two possible splittings
2N×2N and N×N are defined.

All information related to the prediction is signaled on a
PU basis, for example, the prediction mode and PU splitting
type are specified for each PU. Once the prediction mode and
PU splitting is given, motion vector difference, intra prediction
direction, reference indices for each PU partition are specified
on a PU partition basis.

C. Transform unit (TU)

The transform unit (TU), for transform and quantization, is
the third basis unit. Although, in principle, TU can be defined
in a similar way to PU to support arbitrary shape transforms,
only two TU partitions are used in this paper considering the
implementation complexity.

When the tu size flag is equal to zero, the TU size is set
equal to that of the CU which it belongs to. When tu size flag
is equal to one, the TU size is set as N×N for symmetric
PU splittings and N/2×N/2 for asymmetric PU splittings,
respectively. This ensures that the transform which is not
applied across motion boundaries can be tested in the rate-
distortion optimization process for asymmetric PU partitions.

It should be noted that the transform may be applied to
the residue generated by multiple PU partitions with different
motion vectors. This approach is especially beneficial for
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Fig. 4. Example of LCU size and maximum depth combinations for various
resolutions.

coding semi-random residuals generated by complex texture
areas [4].

D. Relationship between CU, PU, and TU

Fig. 3 shows the relationship between the three different
unit concepts, CU, PU, and TU. Given a CU of any size, a
series of split flags is used to specify smaller CUs inside the
CU. For every CU which does not split any more, a PU is
defined specifying how the prediction can be generated. Note
that the PU does not need to be a square shape, and virtually
any kind of new PU splitting can be added without changing
the overall structure. TU size is specified by tu size flag and
PU splitting as explained in Section II-C.

E. Advantages of the flexible unit representation

The proposed unit representation provides several major
benefits. The first benefit comes from the easy support of
CU sizes larger than the conventional 16×16 macroblock.
As mention in previous works [13], [16], [17], this feature
can dramatically reduce the side information when applied to
HD video. Additionally, the proposed method introduces the
separate PU and TU conception to further improve the coding
performance.

Furthermore, since the LCU size and maximum hierarchical
depth are specified in syntax, the unit sizes can be adap-
tively optimized for various content, applications, and devices.
Compared to the use of fixed size macroblock or super-
macroblock, support of various LCU sizes is one of the major
advantages of the proposed codec. By choosing LCU size and
maximum hierarchical depth appropriately, the hierarchical
block structure can be optimized in a better way for the
targeted application. From the aspect of the standardization,
the range of LCU sizes could be specified in the Profiles and
Levels section to match the requirements more specifically.
Fig. 4 shows examples of CU size combinations for several
resolutions.
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Finally, the proposed unit definitions allow us to design
a size-independent syntax representation which specifies all
syntax elements in a consistent way independent of the unit
size. By contrast, in H.264/AVC and its extension in [13]–[15],
block level syntax elements such as prediction mode, trans-
form flag, coded block flag and intra pred mode are coded
differently depending on block size. This size-independent
method of representation allows syntax elements to be spec-
ified generically for all the remaining coding tools. This
property can greatly simplify the specification effort as well
as the actual parsing process, especially if a large number of
hierarchical depths is allowed.

III. CODING TOOLS

Fig. 5 shows all proposed building blocks of the decoder.
All the coding tools are extended to support the proposed
flexible architecture. Intra prediction is extended to support
an arbitrary number of angles rather than the conventional 9-
modes defined in H.264/AVC. Fast integer transforms larger
than 8×8 are developed to support large TU sizes. Edge
definition for the deblocking filter is modified according to the
CU, PU, and TU concepts. Partition information in quadtree-
based adaptive loop filter (QALF) [18] is replaced with CU
splitting information. The details of each coding tool are
briefly introduced in the following sections.

A. Intra prediction

1) Arbitrary directional intra (ADI): In H.264/AVC intra
coding, 9 intra prediction modes are supported for 4×4 and
8×8 blocks but only 4 intra prediction modes for 16×16
blocks. Intra-coded 16×16 blocks were intended to code
homogeneous regions in low resolution video. However, even
relatively large blocks (≥ 16×16) cover only a small part of
objects or background in high resolution video, which may
contain strong directional patterns.

Arbitrary directional intra (ADI) is a coding tool designed
to extend the directional intra prediction scheme used in
H.264/AVC to give more accurate representation of directions
and better suit larger prediction units. In the ADI scheme,
up to 30 angles are generated using the integer pair (dx, dy)
to represent the direction of lines which each mode uses for
context pixel extrapolation.

Due to the large variety of the possible unit sizes, it is
beneficial to adjust the number of angles according to the unit
size. For example, PU partitions with 64×64 and 128×128
sizes are usually used for homogeneous areas which can be
generated by using only some prediction modes, such as
DC and plane modes. In this case, the number of supported
prediction modes of the current PU partition may differ from
that of the neighboring PU partitions. Intra prediction modes
of the neighboring PU partitions are converted to the 9 most
frequently used modes to predict the current intra prediction
mode in a unified way.

2) Multi-parameter intra (MPI): Directional intra predic-
tion sometimes results in non-smooth and unnatural patterns
which are not transform-friendly. This problem can be allevi-
ated by applying a smoothing filter to the prediction signal
obtained by the ADI scheme. Multi-parameter intra (MPI)
allows the used of the 4-point filter for each pixel to increase
the probability of generating a prediction signal well-suited to
the following transform stages. For each PU partition, mpi flag
is used to specify whether or not the MPI scheme is applied.

3) Color Component correlation based prediction (CCCP):
There have been some studies on predicting chrominance pix-
els using the correlation with luminance [19]. Although most
approaches try to predict the pixel values of one color channel
by another color channel, the color component correlation
based prediction (CCCP) scheme derives an object segmenta-
tion map of the chrominance channel from the already coded
luma channel, and applies it to intra prediction.

The CCCP procedure is as follows. Firstly, the size of the
reconstructed luma samples including the neighboring luma
pixels are adjusted to match that of the chroma samples
according to the given chroma format. Then, simple thresh-
olding using the mean value is exploited to generate the
binary segmentation map. After that, two mean values are
computed from the neighboring chroma pixels according to
the segmentation map and assigned to the inner part of the
chroma block. Finally, a 3×3 averaging filter is applied to
improve the smoothness of the prediction.

4) Pixel based template matching (PTM): Whilst direc-
tional extrapolation based intra prediction tools are very ef-
ficient for regions with directional patterns, they are not well-
suited to regions with repeated regular patterns. To overcome
this limitation, several intra techniques using some form of
template matching based on the already decoded pixels have
been proposed [20], [21]. Although the reported schemes were
proven to provide good coding gains for the targeted areas, a
major drawback was the high complexity at the decoder side.

In this paper, a simple pixel based template matching (PTM)
approach is proposed. PTM is designed to apply template
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matching at the pixel level to maximize the degrees of free-
dom. PTM uses only a small number of search points and
both decoded and previously predicted pixels as template and
candidate to minimize the complexity.

5) Combined intra prediction (CIP): Combined intra pre-
diction (CIP) is a coding tool for providing improved pre-
diction, especially in large blocks where a directional linear
prediction may not work well, even with the large range of
angles available to ADI. CIP predictions comprise a weighted
combination of the prediction samples provided by other intra
coding tools together with a pixel-by-pixel mean prediction. It
provides pixel-by-pixel adaptation but is a simpler tool than,
for example, local template matching approaches.

B. Inter prediction

1) High accuracy motion (HAM): Even though higher
motion accuracy results in less prediction error, it does not
guarantee improved coding efficiency, since it leads to an
increase in the bit-rate to convey the motion information.
For example, 1/8-pel motion accuracy may often result in a
reduction in the overall coding efficiency, except for particular
sequences [22].

In this paper, high accuracy motion (HAM), which adap-
tively refines the motion information to an arbitrary accuracy,
is proposed. In the HAM method, motion information at
quarter-pel accuracy is followed by a refinement flag and
optional refinement information at 1/12-pel accuracy. The
refinement flag is set equal to 1 only when the refinement
provides the gain in the rate-distortion optimization sense,
otherwise, the flag is set to 0 and no refinement information is
signaled. Although the refinement information can represent
any accuracy, the current design uses 1/12-pel, since refine-
ment in 1/8-pel accuracy results in the redundancy in the
refinement information.

2) DCT-based interpolation filter (DCT-IF): In H.264/AVC
standard, the prediction values at half-pel positions are ob-
tained using a 6-tap Wiener filter, while those at quarter-
pel positions are obtained by bi-linear combination of the
samples at integer and half-pel positions [1]. This paper
proposes a DCT-based interpolation filter (DCT-IF), which can
directly provide the interpolated value at the desired fractional
accuracy from the samples at integer-pel positions. Since the
DCT-IF can provide the interpolated value without cascaded
filtering, the motion compensation process can be simplified
and the complexity can also be reduced for samples at quarter-
pel accuracy. Furthermore, the DCT-IF provides a unified
way to generate the interpolation filters supporting motion
accuracy higher than quarter-pel, e.g. 1/8-pel, 1/12-pel, etc.
For example, Table I shows the coefficients of the 6-tap filters
generated for 1/12-pel motion accuracy. Note that the filter
coefficients are scaled by 256.

The proposed DCT-IF is a non-cascaded interpolation
scheme, i.e. only one spatial filtering is performed for all the
possible positions. It can be implemented as a multiplication-
free design by optimizing the filter coefficients. Thus, the 6-
tap DCT-IF has the smaller number of operations compared

TABLE I
FILTER COEFFICIENTS OF 6-TAP DCT-IF.

α 2M = 6 (6-tap filter)

-1/12 { -4, 19, 254, -19, 8, -2 }
1/12 { 4, -16, 252, 22, -8, 2 }
2/12 { 6, -28, 242, 48, -17, 5 }
3/12 { 9, -37, 227, 75, -25, 7 }
4/12 { 11, -42, 208, 103, -33, 9 }
5/12 { 12, -44, 184, 132, -39, 11 }
6/12 { 11, -43, 160, 160, -43, 11 }
7/12 { 11, -39, 132, 184, -44, 12 }
8/12 { 9, -33, 103, 208, -42, 11 }
9/12 { 7, -25, 75, 227, -37, 9 }
10/12 { 5, -17, 48, 242, -28, 6 }

to the interpolation filter of H.264/AVC since samples at the
quarter-pel position can be generated by one 6-tap filtering
operation whereas H.264/AVC uses a combination of 6-tap
and bi-linear filters. The 12-tap DCT-IF filter requires twice
as many operations as the 6-tap DCT-IF, however it provides
similar performance to the well-known adaptive interpolation
filter (AIF) scheme [23] while being less complex and more
suitable for hardware implementation.

3) Advanced motion vector prediction (AMVP): In
H.264/AVC standard, motion vectors are predicted from a
median of the motion vectors of the spatially adjacent blocks
[1]. To further improve the efficiency of the motion vector
prediction, a few competition-based prediction methods have
been proposed [24], [25], where the best predictor is selected
from a given set through rate-distortion optimization.

This paper proposes the advanced motion vector prediction
(AMVP) method, which is adapted to the proposed flexible
unit representation. It allows the selection of the best predictor
from the set which consists of three spatially adjacent motion
vectors, their median, and a temporal motion vector. The
overhead for signaling the index of the best predictor is
reduced by re-organizing the set of candidate predictors. First,
the predictors in the candidate set are reordered based on
the PU splitting, so that the most probable motion predictor
appears first in the set. Then, duplicate predictors and the
predictors which can be excluded based on the parsed MVD
values at the decoder side are eliminated from the set [25].
Note that, when only one predictor remains as a result of the
re-organization, no overhead is signaled, since it can be also
derived at the decoder.

C. Spatial Transforms

It is well known that transforms larger than 8×8 provides
better energy compaction and less quantization error for
smooth and coarse textured video areas at the expense of com-
putational complexity [17], [26]. In this paper, 16×16, 32×32
and 64×64 fast integer transforms are presented in addition
to the conventional 4×4 and 8×8 transforms to support large
TUs. In addition, a rotational transform (ROT) tool, which can
adaptively compact the energy into low frequency components
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by rotating the transform basis, is also proposed as a second
transform.

1) Large integer transform (16×16, 32×32 and 64×64):
The discrete cosine transform (DCT) is independent of input
signal while it still provides comparable decorrelation ability
to the Karhunen-Loève Transform (KLT), which is highly
signal-dependent. Moreover, many fast DCT algorithms have
been developed. All large transforms proposed in this paper
are scaled integer DCTs based on Chen’s fast factorizations
[27]. Chen’s fast DCT has a regular butterfly structure which
is beneficial to hardware implementation.

Similarly to the H.264/AVC 4×4 core transform, each
multiplication factor in the flow-graph of the fast algorithm
is scaled and approximated by some fixed precision values p,
i.e. each constant is approximated by the dyadic rational of the
form q/2p, which can be implemented with only additions and
bit-shifting operations. The precision value p can be chosen
according to the dynamic range limitation and coding effi-
ciency. As all multiplication factors are approximated, the core
transform may not be truly orthogonal. However, this minor
non-orthogonality does not result in any perceptible negative
effect on the compression performance, whilst the complexity
can be significantly reduced. Furthermore, it is still possible
to achieve perfect reconstruction using a lifting scheme that
can be applied additionally to the butterfly structure [28].

After all multiplication factors are determined, the forward
2-D transform is performed separately in vertical and horizon-
tal direction as follows:

Y = Cf (CfXT )T = CfXCT
f (1)

where X is N×N residual data, Cf is the core N-point
forward transform, and Y is N×N transformed coefficients.
The calculation of CfXT is performed from left to right in
the flow-graph of the fast algorithm. For the inverse transform,
the computation order is reversed from right to left. Since the
core transform Cf is scaled DCT, the remaining scaling factors
should be integrated into the quantization stage.

2) Rotational transform (ROT): While DCT is the most
widely used block transform for video and image codecs,
the DCT basis functions are not optimal for some types of
residual signal. For example, a residual signal having strong
diagonal components cannot be represented efficiently with the
DCT basis vectors. Typically, directional transform schemes
are proposed to exploit this problem such as Mode Dependent
Directional Transform (MDDT) [29], [30].

However, the direct use of directional transform is not
appropriate to the proposed flexible unit definitions since
it is difficult to design the directional transform by a fast
butterfly structure such as DCT. In addition, the number of
transforms would be almost doubled because both DCT and
the directional transform for various TU sizes would be kept
in the codec design.

In this paper, rotational transform (ROT) is proposed as a
second transform that could be applied after the core integer
transform instead of introducing completely new transform
cores. The main idea of ROT is to change the coordinate

system of the transform basis, instead of direct rotation of the
input residual. The rotation matrices of horizontal and vertical
directions can be obtained from a set of angles predefined in
the ROT dictionary. The ROT dictionary was first generated by
Monte Carlo method using Lehmer’s pseudo-random numbers
for angles [31], [32]. Then the 4 most frequent elements
of rotational transform dictionary were selected in order to
minimize encoder-side complexity. The index of rotational
angles in the dictionary is signaled to the decoder explicitly.

Since ROT is a second transform, not all of the DCT
coefficients are processed. For TUs larger than 4×4, only
8×8 low-frequency areas are processed. It has been found that
this restriction does not degrade the coding efficiency since
most of the coefficients are already compacted into these low-
frequency areas.

D. In-loop Filtering

1) Deblocking filter: The same process as used in
H.264/AVC is employed for the deblocking filter. However,
the use of a large size transform can effectively reduce the
complexity of the deblocking filter, by reducing the number of
deblocked pixels. It was reported that the number of deblocked
pixels was reduced by 43% on average [4] for the 1080p
sequences used in [2].

2) CU-synchronized adaptive loop filter (CU-ALF):
Quadtree based adaptive loop filter (QALF) [18] is known
to provide significant coding gain by effectively combining
both the Wiener filter approach and the quadtree based on/off
selections. In QALF, along with filter coefficients, the informa-
tion representing the quadtree structure is coded independently
with the prediction quadtree structure, which results in large
amount of side information in the slice header.

Since the proposed unit representations provides a generic
quadtree structure similar to the original design of QALF,
this information can be re-utilized for the adaptive loop filter
process. CU-synchronized adaptive loop filter (CU-ALF) is
based on the QALF approach; however, it uses the already
coded CU hierarchy as the on/off control for the adaptive loop
filter process instead of coding separate quadtree information
in the slice header.

It has been reported that the proposed CU-ALF provides
comparable coding gain to QALF, while eliminating the need
for any side information related to the quadtree partition in
the slice header and reducing the encoder complexity [4].

3) Extreme correction (EXC) and band correction (BDC):
Extreme correction (EXC) is designed to compensate the
distortion according to the identified pixel classes. Each pixel
is categorized as local maxima, local minima, or object edge
by simple computation based on the four neighboring pixel
values: left, above, right, and bottom. For each pixel class, the
mean difference between the original and the reconstructed
signals is computed and transmitted to the decoder. A fuller
description is given in [4]. Band correction (BDC) is another
form of pixel classification, based on pixel value ranges.
The main motivation is to equalize the different probability
distribution functions of the reconstructed signal with the
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Fig. 6. Rate distortion curve of BasketballDrive sequence in Class B (1080p).

original. In this paper, up to 16 value ranges are defined; the
mean difference for each band is computed and transmitted to
the decoder.

4) Content adaptive dynamic range (CADR): Internal bit
depth increase (IBDI) is a technique to reduce the rounding
error by enlarging the internal data precision [33]. Typically,
IBDI is implemented by increasing the source bit-depth, which
makes the encoder implementation more difficult. Content
adaptive dynamic range (CADR) is related to IBDI, but is
a more general form of source scaling. Using the CADR, a
pixel value x is adaptively scaled to F (x) as follows

F (x) = (2bit − 1)(x−Min)/(Max−Min) (2)

where bit, Max and Min are the bit-depth, the maximum value
and the minimum value of the input source, respectively. It
should be noted that the parameters Min and Max can be
adjusted at sequence, slice, or even block level. CADR can be
used to reduce the rounding error without requiring increased
bit-depth in the encoder.

E. Entropy Coding

1) Syntax-based context-adaptive binary arithmetic coding
(SBAC): As with the context-adaptive binary arithmetic coding
(CABAC) of H.264/AVC [34], the SBAC consists of four ma-
jor steps: syntax-based binarization, context modeling, prob-
ability estimation, and binary arithmetic coding. The syntax-
based binarization and the context modeling are adapted to the
syntax elements obtained from the flexible unit representation
and the extended coding tools. The probability estimation and
binary arithmetic coding are based on an improved version
of the arithmetic coding method specified in Annex D of the
JPEG still image coding standard [35]. Specifically, the table-
based probability update and the multiplication-free design
are improved, and the bypass mode for equi-probable binary
symbols is added to reduce complexity [4].

2) Adaptive coefficient scanning (ACS): Since large trans-
forms frequently have very sparse coefficient distributions, a
fixed zigzag scanning method may result in long coefficient
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Fig. 7. Rate distortion curve of PartyScene sequence in Class C (WVGA).

scanning lists including many zeroes, resulting in inefficient
coding. Adaptive coefficient scanning (ACS), which adaptively
chooses the best scanning method for each TU, is used to
avoid this problem. Given the quantized transform coefficients,
the best scanning pattern is chosen from conventional zigzag,
horizontal, and vertical scanning patterns, and then its index
is explicitly signaled in each TU. Note that the ACS index
is signaled only when non-zero AC coefficients exist in the
TU, since there is no difference between the patterns when
the TU includes only the DC coefficient. When the horizontal
or vertical scanning methods are chosen as the best scanning
method, the mapping process from the coefficient array indices
to the zigzag scanning indices is not necessary. Thus, the
complexity for the coefficient indexing can be reduced and
also the memory bandwidth to access the zigzag mapping table
can be saved.

IV. PERFORMANCE ANALYSIS

To verify the performance of the proposed coding tools, they
were implemented into one complete video codec software
which is available at [4]. This section provides both objective
performance based on the peak signal-to-noise ratio (PSNR)
measure and the subjective performance based on the mean
opinion score (MOS) values for the proposed video codec.

A. Objective compression efficiency

The coding efficiency of the proposed system is verified
using two sets of coding configurations defined in the Call
for Proposals [2] — constraint set 1 (CS1) and constraint set
2 (CS2) which correspond to a random access case and a
low delay case, respectively. Fig. 6 and Fig. 7 show typical
examples of rate-distortion curves when video sequences are
coded using CS1 configuration. As shown in the figures, the
proposed codec consistently showed significant coding benefits
over H.264/AVC High Profile. For comparison with other
recent advances in the video coding area, the results of the
KTA 2.6r1 [36] with the same test configurations are also
included. This test configuration is same as in [37], where all
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TABLE II
SUMMARIZED BD-RATE REDUCTIONS FOR VARIOUS RESOLUTIONS.

Class Sequence CS1 (%) CS2 (%)
(Size) name BD-rate Avg. BD-rate Avg.

A Traffic 40.59 35.21 N/A N/A
(4K) PeopleOnStreet 29.84 N/A

B Kimono 44.42 43.29 44.45 43.66
(1080p) ParkScene 32.96 31.18

Cactus 40.78 34.74
BasketballDrive 44.21 47.29

BQTerrace 54.06 60.62

C BasketballDrill 43.09 39.94 36.82 35.58
(WVGA) BQMall 39.69 37.06

PartyScene 41.13 40.45
RaceHorses 35.86 27.99

D BasketballPass 30.55 36.45 26.93 32.16
(WQVGA) BQSquare 54.19 51.87

BlowingBubbles 33.97 28.24
RaceHorses 27.08 21.59

E Vidyo 1 N/A N/A 48.38 47.48
(720p) Vidyo 3 N/A 46.26

Vidyo 4 N/A 47.79

Total avg. 39.49 39.48

major tools of KTA including enhanced AIF, MV competition,
MDDT, high precision filter, ALF, and extended block size are
enabled. It should be noted that the improved coding efficiency
can be observed with both high resolution and low resolution
video material.

Table II summarizes the performance of the proposed
codec relative to the H.264/AVC High Profile. The average
compression performance improvement over all sequences is
39.49% in CS1 and 39.48% in CS2, respectively. Class B
(1080p resolution) achieves 43.29% (CS1) and 43.66% (CS2)
bit saving on average, with BQTerrace as the best sequence
in both configurations, showing 54.06% (CS1) and 60.62%
(CS2) performance improvement, respectively. RaceHorses in
Class D (WQVGA resolution) shows the lowest performance
improvement in both configurations, at 27.08% in CS1 and
21.59% in CS2, respectively. The performance summarized in
Table II shows that the proposed codec consistently achieves
the excellent coding performance regardless of the resolution
of input video sequences and the coding configuration.

B. Subjective compression efficiency

To evaluate the submitted responses to the CfP on HEVC
standard [2], a large scale subjective test was carried jointly
by ISO/IEC JTC1/SC29/WG11 (MPEG) and ITU-T SG16
Q.6 (VCEG). The official report of subjective test results
can be found in [3]. It was shown that the proposed codec
provided excellent subjective improvements over H.264/AVC
in all configurations and it gave the best overall results of all
of the proposals that were submitted, based on MOS values.

Table III shows several pairs of MOS values for H.264/AVC
High Profile and the proposed codec for the five 1080p

TABLE III
SUMMARIZED MOS VALUES FOR 1080P SEQUENCES.

H.264/AVC Proposed
Sequence Bit-rates MOS Bit-rates MOS Reduction

(kbps) (kbps) (%)

Kimono 4000 8.86 1600 8.56 60.0

ParkScene 4000 7.41 1600 7.78 60.0

Cactus 7000 8.61 3000 8.24 57.1

BasketballDrive 7000 7.44 3000 8.17 57.1

BQTerrace 10000 8.77 3000 9.17 70.0

Average 6400 8.22 2440 8.38 60.9

sequences. Each pair has been selected to give similar MOS
values, to verify the bit-rate reduction that the proposed codec
provides for similar subjective visual quality. As shown in the
table, the proposed codec operating at an average of 2.4Mbit/s
provides similar visual quality to H.264/AVC High Profile
operating at an average of 6.4Mbit/s. This corresponds to ap-
proximately 60% bit-rate savings, indicating that the proposed
codec provides even greater improvement in subjective visual
quality than would be expected from objective metrics such
as PSNR.

V. CONCLUSION

In this paper, a high-efficiency video compression frame-
work based on flexible unit representation was proposed. The
proposed scheme provides a generic quadtree structure while
defining the relationship between region splitting, prediction
method, and transform sizes with minimal signaling overhead.
The coding tools of the proposed codec were also extended
in a very consistent way according to the flexible unit rep-
resentation. For example, the number of directions in the
directional intra prediction scheme was extended to arbitrary
angles and the supported transform size was extended up to
64×64. By combining other novel coding tools designed under
the proposed unit representation, the proposed codec showed
about 40% performance improvement over the state-of-the-art
H.264/AVC standard based on objective PSNR measurements.
The large-scale subjective testing results show that an average
of about 60% coding gain can be achieved for the 1080p
sequences. The video codec described in this paper was a
candidate in the competitive phase of the HEVC standard-
ization work and it has been partially adopted into the first
standardization model of the collaborative phase of the HEVC
effort.
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