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Abstract—This paper proposes speaking-aid systems based on
one-to-many eigenvoice conversion (EVC) for enhancing three
types of alaryngeal speech: esophageal speech; electrolaryngeal
speech; and body-conducted silent electrolaryngeal speech. Al-
though alaryngeal speech allows laryngectomees to utter speech
sounds, it suffers from lack of naturalness and speaker indi-
viduality. To improve the sound quality of alaryngeal speech,
alaryngeal-speech-to-speech (AL-to-Speech) methods based on
statistical voice conversion have been proposed. To recover the
speaker individuality of alaryngeal speech, a one-to-many EVC
capable of flexibly adapting the conversion model to given
target natural voices was applied to the AL-to-Speech methods.
The experimental results of objective and subjective evaluations
demonstrate that the proposed methods yield significant improve-
ments of speech quality and make the converted voice quality
similar to the given target voice quality.

I. INTRODUCTION

People who have undergone a total laryngectomy due to

an accident or laryngeal cancer cannot produce speech sounds

because their vocal folds have been removed. Therefore, they

require an alternative speaking method to produce speech

sounds without vibration of their vocal folds. This generated

speech is called alaryngeal speech.

There are several types of alaryngeal speech. As typical

alaryngeal speech, esophageal speech (ES) and electrola-

ryngeal speech (EL) are widely used in Japan. Moreover,

we have proposed another type of alaryngeal speech, body-

conducted silent EL (silent EL) [1], which is produced with

small-powered sound source signals and detected with a Non

Audible Murmur (NAM) microphone [2], to keep the sound

source signals generated from EL less audible. Each of these

three types of alaryngeal speech have their own advantages in

terms of usability or quality. However, they suffer from lack

of naturalness and speaker individuality.

To improve the sound quality of these three types of

alaryngeal speech, conversion methods from each alaryngeal

speech into normal speech [1], [3], [4] have been proposed

based on statistical voice conversion (VC) [5], [6], [7]. These

approaches are called alaryngeal-speech-to-speech (AL-to-

Speech) based on VC in this paper. In AL-to-Speech based on

VC, Gaussian mixture models (GMMs) of the joint probability

densities of acoustic features between alaryngeal speech and

normal speech are trained in advance using parallel data

consisting of dozens of utterance-pairs of those two types

of speech data. The trained models are capable of converting

the acoustic features of alaryngeal speech to those of normal

speech in a probabilistic manner while keeping linguistic

information unchanged. This technique yields significant im-

provements of speech quality since the converted speech is

basically generated according to the statistical properties of

acoustic features of normal speech. However, the converted

voice quality is determined by the target natural voices used

in the training. To use a user’s own original voice before

undergoing total laryngectomy as the target voice, parallel

data of alaryngeal speech and the original voices are needed.

However, very few laryngectomy patients prepare such data.

To allow laryngectomees to flexibly control the converted

voice quality, this paper applies one-to-many eigenvoice con-

version (EVC) [8] to AL-to-Speech. The one-to-many EVC

is a conversion method from a single source speaker’s voice

into an arbitrary target speaker’s voice. This method allows us

to control the speaker individuality of the converted speech

by manipulating a small number of parameters or flexibly

adapting the conversion model to an arbitrary target speaker

using only a small number of given target speech samples in

a text-independent manner. Therefore, the proposed method is

expected to flexibly recover speaker individually of laryngec-

tomees even if only a few speech samples of their original

voices are available. In our previous work [9], one-to-many

EVC has been applied to ES and its effectiveness has been

demonstrated. In this paper, we additionally apply one-to-

many EVC to EL and silent EL as well as ES and evaluate its

effectiveness assuming that only a few original speech samples

are available for adaptation.

II. ALARYNGEAL SPEECH

Figure 1 shows the three types of alaryngeal speech dealt

with in this paper. Each of them has their own advantages.

However, their sounds are relatively unnatural compared with

natural voices and they also suffer from lack of speaker

individuality.

A. Esophageal speech (ES)
One of the biggest advantages of ES is that it can be pro-

duced without any equipment. Alternative excitation sounds

are produced by releasing gases from or through the esopha-

gus, and then they are articulated to generate ES. ES usually

sounds more natural than the other types of alaryngeal speech.

However, its sound quality is much lower than normal voices.

It often includes specific sounds produced through the produc-

tion mechanism of ES.
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Fig. 1. Speaking methods for producing three types of alaryngeal speech (ES,
EL, and silent EL).

B. Electrolaryngeal speech (EL)
EL is generated using an electrolarynx that is a medical

device to mechanically generate the sound source signals,

which are conducted into the oral cavity from the skin on

the lower jaw. EL is easy to produce compared with ES.

On the other hand, it is difficult to mechanically generate a

naturally sounding F0 contour, and therefore a monotone pitch

is often generated. Consequently, it sounds very mechanical.

Moreover, because the electrolarynx needs to generate enough

loud sound source signals to make the produced speech sounds

sufficiently audible, those signals are easily emitted outside

and they would be perceived as noise by other people.

C. Body-conducted silent electrolaryngeal speech (silent EL)
To alleviate the issue of the noisy sound source signals

caused by the electrolarynx, a novel device that generates

extremely small-powered sound source signals has been pro-

posed. People around the speaker are no longer annoyed by

the generated sound source signals. On the other hand, the

use of this device also makes the produced speech inaudible.

Therefore, it is detected with NAM microphone, which is

one of the body-conductive microphones capable of detecting

extremely small signals in the vocal tract from the neck below

the ear. The detected speech sounds are much more unnatural

compared with EL due to the lower-powered excitation and

body conduction.

III. ONE-TO-MANY EVC
We describe one-to-many EVC as a technique for flexibly

controlling voice quality of the converted speech. This method

consists of a training process, an adaptation process, and a

conversion process.

A. Training Process
As a conversion model, an eigenvoice GMM (EV-GMM)

is trained using multiple parallel data sets consisting of a

single source speech data set and many target speech data sets

including various speakers’ voices. Let us assume a source

static feature vector xt = [xt(1), · · · , xt(Dx)]� and a target

static feature vector yt = [yt(1), · · · , yt(Dy)]� at frame t,
where � denotes transposition of the vector. As a source

speech parameter vector, we use a feature vector Xt to capture

contextual features of the source speech, e.g., the joint static

and dynamic feature vector or the concatenated feature vector

from multiple frames. As a target speech feature vector, we use

a feature vector Y t = [y�t , Δy�t ]� consisting of static and

dynamic features. The EV-GMM models the joint probability

density of the source and target parameter vectors as follows:

P (Xt, Y t|λ(EV ), w)

=
M∑

m=1

αmN
(
[X�

t , Y �
t ]�; μ(X,Y )

m (w),Σ(X,Y )
m

)
(1)
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μ
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m

μ
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]
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where w = [w(1), · · · , w(J)]� is a target-speaker-dependent

parameter for controlling target voice quality. λ(EV ) is a

canonical EV-GMM parameter set consisting of αm, μ
(X)
m ,

Σ(X,Y )
m , Am, and bm for the mth mixture component. bm

and Am = [am(1), · · · , am(j), · · · , am(J)] are a bias vector

and eigenvectors, respectively. The number of eigenvectors is

J .

Adaptive training [8] is used in the EV-GMM training.

The canonical EV-GMM parameters and the target-speaker-

dependent parameters are optimized by maximizing a total

likelihood of the EV-GMM adapted to individual pre-stored

target speakers as follows:

{λ̂(EV )
, ω̂(1:S)} = argmax

λ(EV )
,ω(1:S)

S∏
s=1

Ts∏
t=1

P (Xt,Y
(s)
t |λ(EV ), ωs)

(4)

where λ̂
(EV )

denotes the updated canonical EV-GMM pa-

rameter set and ω̂(1:S) = {ω̂1, · · · , ω̂S} denotes a set of

the updated weight vectors for the individual pre-stored target

speakers. Y
(s)
t is the target feature vector of the s-th pre-stored

target speaker at frame t.

B. Adaptation Process
The trained EV-GMM allows us to control the converted

voice quality by manipulating the weight vector w. If target

speech data are available, the EV-GMM is flexibly adapted

to the target speech by automatically determining the weight

vector in a text-independent manner. The optimum weight

vector is determined by

ŵ = argmax
w

T∏
t=1

∫
P (Xt, Y

(tar)
t |λ(EV ), w)dXt (5)

where {Y (tar)
1 , · · · ,Y

(tar)
T } are a time sequence of the given

target feature vectors. This adaptation process works well even

if using only a few arbitrary utterances of the target speech.

C. Conversion Process
Let X = [X�

1 , · · · , X�
T ]� and Y = [Y �

1 , · · · , Y �
T ]�

be a time sequence of the source and target feature vectors,

respectively. The converted static feature vector sequence

ŷ = [ŷ�1 , · · · , ŷ�T ]� is determined by maximizing a likelihood
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of the conditional probability density function of Y given X
as follows:

ŷ = argmax
y

P (Y |X, λ) subject toY = Wy (6)

where W is a window matrix to extend the static feature

vector sequence into the joint static and dynamic feature vector

sequence. Furthermore, the quality of the converted speech is

dramatically improved by considering a global variance of the

converted features [7].

IV. AL-TO-SPEECH BASED ON ONE-TO-MANY EVC
To improve sound quality and recover speaker individuality

of the three types of alaryngeal speech (ES, EL and silent EL),

we propose the AL-to-Speech method based on one-to-many

EVC. The proposed method allows the laryngectomees to utter

speech sounds similar to their own normal voice quality even

if only a few utterances of their previously recorded normal

voices are available for the EV-GMM adaptation. Even if

those voices are not available, the proposed method still allows

the laryngectomees to change the converted voice quality by

manipulating the weight parameter of the EV-GMM.

In AL-to-Speech, spectral segment feature vectors of ala-

ryngeal speech are converted into multiple acoustic features

of the target normal speech such as spectrum, aperiodic com-

ponents [10], and F0. The spectral segment feature vector is

extracted with PCA from concatenated spectral feature vectors

from multiple frames around a current analyzed frame. This

feature is effective for improving conversion accuracy [4].

The proposed AL-to-Speech based on EVC also consists of

training, adaptation and conversion processes. In the training

process, two EV-GMMs for spectral estimation and aperiodic

component estimation are independently trained using multiple

parallel data sets consisting of alaryngeal speech data uttered

by a laryngectomee and normal speech data uttered by many

pre-stored non-laryngectomees. To build the GMM for F0

estimation, first the target-speaker-dependent GMMs of joint

probability density of the source spectral segment feature vec-

tors and the target log-scaled F0 are separately trained for all

pre-stored target speakers. Then, the GMM yielding the best

conversion accuracy in F0 estimation is manually selected.

In the adaptation process, the weight vectors of the EV-

GMMs for the spectral and aperiodic component estimation

are independently estimated using the spectral features and the

aperiodic components extracted from the given target speech

samples. In the conversion process, the converted spectral

feature vectors and aperiodic components are independently

estimated with the adapted EV-GMMs. On the other hand,

an F0 sequence is estimated with the selected target-speaker-

dependent GMM. Then, it is further converted so that its mean

μx and standard deviation σx on the log scale are equal to

those of the adaptation speech data, μy and σy , as follows:

log yt =
σy

σx
(log xt − μx) + μy (7)

where xt and yt denote the F0 value estimated with the GMM

and the converted F0 value at frame t, respectively.

V. EXPERIMENTAL EVALUATIONS

To demonstrate the effectiveness of the proposed AL-to-

Speech methods, we conducted experimental evaluations.

A. Experimental conditions
We recorded 50 phoneme-balanced sentences of ES uttered

by one Japanese male laryngectomee and those of EL and

silent EL uttered by another Japanese male laryngectomee,

respectively. We also recorded the same sentences of normal

speech uttered by 40 Japanese non-laryngectomees consisting

of 27 male and 13 female speakers. Speech data of 30 non-

laryngectomees consisting of 22 male and 8 female speak-

ers were used for training and those of the other 10 non-

laryngectomees consisting of 5 male and 5 female speakers

were used as the target data for evaluation. From the recorded

50 sentences of each speaker, 40 sentences were used as

training or adaptation data and the remaining 10 sentences

were used as the test data. The sampling frequency was set to

16 kHz.

The 0-th through 24-th mel-cepstral coefficients were used

as a spectral parameter. Mel-cepstrum analysis [11] was em-

ployed for alaryngeal speech and STRAIGHT analysis [12]

was employed for normal speech. The shift length was 5 ms.

To extract the spectral segment feature of ES, current and ±
8 frames were used for spectral and aperiodic estimation and

current and ± 16 frames were used for F0 estimation. For

EL and silent EL, current and ± 8 frames were used for

every parameter estimation. As the source excitation feature

of normal speech, we used log-scaled F0 values extracted

with STRAIGHT F0 extractor [13] and aperiodic components

averaged on five frequency bands (0-1, 1-2, 2-4, 4-6, and 6-8

kHz) that were used for designing mixed excitation.

The EV-GMMs for spectral and aperiodic component esti-

mation were trained in each type of alaryngeal speech. The

number of eigenvectors was set to 29 in every EV-GMM.

The number of mixture components was set to 64. The EV-

GMMs were adapted to the target speakers using 1, 2, 4,

8, 16, or 32 utterances of their normal speech data. As a

conventional approach (i.e., AL-to-Speech based on VC), we

also trained the GMMs for spectral and aperiodic estimation

using a parallel data set of each type of alaryngeal speech

and normal speech of each target speaker. The number of

utterance-pairs used in training was set to 1, 2, 4, 8, 16 or 32.

The number of mixture components was optimized manually

according to the training data size.

B. Objective evaluations
We evaluated the spectral estimation accuracy of each AL-

to-Speech method with mel-cepstral distortion between the

estimated and target mel-cepstra.

Figure 2 shows mel-cepstral distortion as a function of the

number of adaptation utterances used in the proposed method

or that of utterance-pairs used in the conventional method.

The proposed method yields much better conversion accuracy

compared with the conventional method when only a few

utterances of the target normal speech are available. It is

observed that the distortion caused by the proposed method

using 16 adaptation utterances is almost equivalent to or
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Fig. 2. Mel-cepstral distortion as a function of the number of utterances of
target normal speech (i.e., utterance-pairs in VC or adaptation utterances in
EVC).

smaller than that caused by the conventional method using 16

parallel utterance sets. Note that parallel data are not necessary

in the proposed method since unsupervised adaptation using

arbitrary utterances of the target normal speech is available.

C. Perceptual evaluations
We conducted an opinion test of speech quality. Ten listen-

ers evaluated 9 types of speech samples including three types

of alaryngeal speech (ES, EL, and silent EL), three types of

converted speech with the conventional method (AL-to-Speech

based on VC), and three types of converted speech with the

proposed method (AL-to-Speech based on one-to-many EVC).

The conventional method used 32 utterance-pairs for GMM

training. On the other hand, only one utterance was used as

adaptation data for the EV-GMMs in the proposed method.

Each listener evaluated 135 speech samples.

Figure 3 shows the result of the test. All AL-to-Speech

methods yield significant improvements of speech quality

compared with the original alaryngeal speech. It is worthwhile

to note that the proposed method achieves better speech quality

than every type of original alaryngeal speech while keep-

ing the external excitation sounds inaudible. The converted

speech quality of the proposed method is equivalent to that

of the conventional method in conversion of three types of

alaryngeal speech. Note that the proposed method needs only

one arbitrary utterance of the target normal speech while the

conventional method needs 32 utterance-pairs of alaryngeal

speech and the target normal speech.

VI. CONCLUSIONS

This paper has presented speaking-aid systems based on

one-to-many EVC for three types of alaryngeal speech,

esophageal speech, electrolaryngeal speech, and body-

conducted silent electrolaryngeal speech. Our proposed meth-

ods are capable of converting alaryngeal speech into the

target normal speech even if only one arbitrary utterance

of the target speech is available. The experimental results

have demonstrated that the proposed methods yield significant

improvements of sound quality in every type of alaryngeal

speech.

Fig. 3. Result of opinion test of speech quality. ”Org”, ”VC”, and ”EVC” show
original alaryngeal speech, converted speech by the conventional method, and
converted speech by the proposed method, respectively.
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