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Abstract—This paper investigates the potential of the new
Weighted-Compressive Sensing approach which overcomes the
major limitations of other compressive sensing and outperforms
current state-of-the-art methods for low-rate reconstruction of
sequences of MRI images. The underlying idea of this approach
is to use the image of the previous time instance to extract
an estimated probability model for the image of interest, and
then use this model to guide the reconstruction process. This is
motivated by the observation that MRI images are hugely sparse
in Wavelet domain and the sparsity changes slowly over time.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is an essential medical
imaging tool burdened by its intrinsic slow data acquisition
process. Since data acquisition is sequential in MR imaging
modalities, the scan time (time to get enough data to accurately
reconstruct one frame) is reduced if fewer measurements
are needed for reconstruction. Goal of many researchers is
therefore to employ a smaller set of samples than normally
required to reconstruct the original images. However, when k-
space is under sampled, the Nyquist criterion is violated, and
conventional Fourier reconstructions exhibit aliasing artifacts.

Compressed sensing (CS) [1]-[4], on the other hand, aims
to reconstruct signals and images from significantly fewer
measurements than were traditionally thought necessary. CS
has already had noteworthy impacts in this field [5], [6]
which enables the reconstruction of MRI images from much
smaller set of measurements than the number of Nyquist-rate
samples. It was shown that MRI has two key features that
makes the application of CS successful; first is that MRI
images are naturally compressible by sparse coding in an
appropriate transform domain (e.g., by wavelet transform [7]);
second is that MRI scanners acquire sample images in 2D
Fourier transform, which is known to be incoherent w.r.t.
sparse domain, rather than acquiring direct pixel samples [8].

Much of the current CS-based works in the literature are,
mostly concerned with reconstruction of static MRI images.
However, in many important and challenging MRI applica-
tions, such as volumetric (3D) MRI or real-time MRI (refers
to the continuous monitoring of moving objects in real time),
instead of just one image slice, we are dealing with sequences
of MRI images which are closely related to each other. Real-
time MRI, for example, currently is only possible with low
image quality or limited rate of slices per second due to the

time-consuming scanning process [9]. Therefore developing
CS-based methods, specifically adopted for dealing with dy-
namic sequences of MRI images, can greatly benefit these
applications. To the best of our knowledge, only a few works
have developed reconstruction methods for sequences of MRI
images (e.g. [8], [9]).

II. THE BACKGROUND
A. Notations

Throughout the paper, vectors are denoted by boldface
letters (e.g. f,F) and f; is the i-th element of the vector
f. Scalars are shown by small regular letters (e.g. n, k) and
matrices are denoted by bold capital Greek letters (¥, ®).
Superscript (¢) added to a vector/matrix refers to that of time
t. We use the notation ®|s to denote the sub-matrix containing
the columns of ® with indices belonging to S. For a vector,
the notation y|s forms a sub-vector that contains elements
with indices in S.

B. Problem Formulation

In its noiseless formulation, the problem can be posed
as follows: let f) € R™ be the slowly time-varying MRI
signal at epoch ¢, which is sparse in a transform domain
FO = wf®) SO .= k€ {1,---,n} : FO|, £ 0}
denote the support of the signal in the transform domain. At
each slice, the image is measured using a sampling matrix (®
of size m x n) and y(®) = &f(®) is the observation vector.
The problem, at each time %, is then to recover the original
image, f(*), from the corresponding compressive samples
(y®)), assuming that the image of interest is sparse. The most
straightforward application of CS for reconstruction of the
dynamic signal, would be to use the simple CS at each time
frame separately [9]. This means that at each time frame, we
search for a signal that satisfies the observations and is sparsest
in the transform domain. Equivalently, at each time instant, ¢,
we find a g which is an estimate of f () as a solution to the
following optimization problem:

£ — argmin{HGrHé1 subject to ®g = y(t)}. (1)

where G = ¥g.

In this method, however, the fact that all image slices
are closely related is not exploited. The authors of [10],
propose a method based on the fact that the MRI images



change slowly over time. They dynamically update the solution
of the above minimization, without directly solving it. The
proposed dynamic update scheme systematically breaks down
the solution update into a small number of linear steps.
However, this approach merely uses past reconstructions to
speed up the current optimization and does not improve the
reconstruction error and therefore the number of samples
needed is equal to the conventional CS [11]. Authors of [12],
discussed the problem of reconstructing a signal when some
priori information exists about the signal (we refer to their
method as priori-CS). Their method can be applied to the
problem of sparse sequence reconstruction as follows:

£ — argmin{”(}He1 subject to
@g = y(t)> ”G - (f(t_l))Hfl < 6}' 2

The assumption is that ¢; of difference between the current
signal and the previous signal, (G — f(*~1||,, ) would be
small, if the support is changing slowly over time. However,
this assumption is not always valid as values and locations
of the non-zero elements (spikes) of a sparse signal will
typically change over time. Recently Vaswani and Lu [8],
[11], proposed the modified-CS which uses the support of
the previous time instant (S*~1)) as an estimated support of
the signal of interest (F®) at current time and then use this
estimate for reconstruction of F(*), by finding a signal which
satisfies the observations and is sparsest outside S*~1). This
is equivalent to solving the following optimization problem:

min{HG|$<t,1)H€1 such that ®g=y®}. 3)

where G|gi—1) = {G;:i € St} and S¢-V = {k €
{1,---,n} : F& Y| = 0}, is the complement of S*~1),
It is shown in [11], that under fairly general conditions, the
number of samples needed would be less than the conventional
CS.

In this paper, we apply a CS-based method called
”Weighted-CS” [13] to the problem of reconstruction of se-
quences of MRI images . Through extensive experimental
results we show that Weighted-CS is able to achieve exact
reconstruction from even fewer number of samples than the
modified-CS by extracting more priori information from the
previous reconstructed image than just the estimated support.
The paper is organized as follows: next section presents the
Details of Weighted-CS algorithm as applied to sequences
of MRI images. We present and analyze our experimental
results in section IV before providing the concluding remarks
in section V.

III. WEIGHTED-CS

To guide the reconstruction process, our approach makes use
of critical a priori knowledge including the estimated support
of the signal of interest in the transform domain. The idea is
based on the observation that in sequences of MRI images,
nearby slices are closely related to each other (see figure 3).
Therefore, the conjecture is that we should be able to extract
some priori information about sparsity of F(*) from F(~1),

More specifically, we try to estimate the probability of each
element of F(*) having a non-zero value, from F(~1)_ For the
signal of interest at time ¢ (F(*)), let p; be the probability of its
it" element having a non-zero value, p; := P(F; > 0) and let
p = [p1,DP2, - ,Pn] € R™ be the sparsity probability vector.
In our proposed method, we first estimate this probability
vector p for the current signal (F®) from the reconstructed
signal of the previous time instant (F(*~1)) and then use p to
aid the reconstruction of F(*). This is discussed in detail in
the following sub-sections.

A. Reconstruction using the sparsity probability model

In this sub-section, we discuss the problem of recovering
a signal F' using its sparsity probability model. More specifi-
cally, let p := [p1,p2, - ,Pn] € R™ be the priori knowledge
of the signal of interest’s sparsity, where p; := P(F; > 0)
is the probability of F; having a non-zero value. It is clear
that if p; = 0, then F; is always 0, while if p, = 1, then it
is known beforehand that F has a spike at location ¢ (though
its value is unknown). p; = 0.5 basically means that no priori
information of F; sparsity is available and it is as likely as not
to have a non-zero value.

In order to incorporate the probability model of the signal
into the process of reconstruction, we propose to minimize
a weighted ¢; norm (4), where the weights are adjusted
according to the probability of each entry being non-zero:

min |[WG]|,, subject to ®g=1y. 4)

where W = diag([wy,ws, -+ ,wy,]). Intuitively, a smaller
weight should be given to those entries with higher probability
of being non-zero while those elements with small probability
should be penalized with larger weights. Naturally, we want
to reward and penalize the elements uniformly using a linear
function. Thus, the choice of the weight for each element is:

w; = 2(1 — pi) ®)

Figure 1 shows the chosen weight with respect to the value
of the probability. It can be seen that as the probability of
an element being non-zero, increases, its weight decreases
accordingly. Notice that if p; = 0.5 then w; = 1 and w; < 1
when p; > 0.5 (similarly if p; < 0.5 then w; > 1). It should
be noted that the weighted ¢, approach (4), could be seen as a
generalized ¢; minimization, since when no priori information
of the sparsity is available (which means for all elements
p; = 0.5), it reduces to the conventional #; minimization as
all weights would be equal.

B. Estimation of sparsity probability vector

In this sub-section, we discuss estimation of the sparsity
probability model for a signal at time ¢, from the reconstructed
signal at time ¢t — 1. Based on the assumption that sparsity
changes smoothly with time, given a spike in the signal at
time ¢ — 1, there is a good chance that either it remains
in the same location, or shifts to some point in the same
vicinity in the next time frame (¢). Similarly, at time ¢ it is
expected that zeros appear in the vicinity of zeros at time
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Fig. 1. Chosen weight (w;) vs. probability (p;).

t — 1. More specifically, suppose there is a spike in the i*"
location of F(!~1_ In the next time instant, there is a very
high probability this spike remains in the same location but
also some possibility that it moves to some other point in
the vicinity. Thus, the probability of the spike appearing at
the each location decreases as we get farther from (7). This
motivated us to use a Gaussian distribution (figure 2(a)) to
provide an estimate of the probability of the progression of a
spike in the next time frame.
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Fig. 2. Tllustration of estimation of sparsity probability.

Thus the probability of j** element of F(*) being non-zero
(p§t)) is the accumulated probability of the spikes of F(—1)
moving to location j at time ¢ as follows:

e—i—0)?/207

(6)

where S~ is the support of F(~1) and o2 is the variance

of the Gaussian distribution which is set proportional to the
signal’s rate of change with time. Figure 2(b) shows a syntetic
signal F(*~1) together with the probability of the elements of
F® being non-zero in the next time frame (p(*)) which is
the dashed red line. From this figure and equation (6), it can
be seen that the maximum value of pg-t) is 1. This coincides

with the locations where in the previous time instant, Fj(t_l)
and all elements in its vicinity ([j — 30, j + 30]) are non-zero.
Similarly, pgt) is 0, if there is not any spike in this span.

The above formulation can be extended for 2D images using
a 2D Gaussian distribution.

It should be mentioned that if no priori knowledge on the
sparsity of the signal of interest is available, including at
t = 1 where there is no previous time instant to estimate
the probability from, we set all p; = 0.5 and basically we
solve a basic #; minimization.

C. Reconstruction of the time sequences of sparse signals

In the earlier sub-sections, we explained the methods for
estimating the sparsity probability model and its use for
guiding the reconstruction. Using these methods, the algorithm
for reconstruction of sequences of MRI images is summarized
in Algorithm 1 below. It should be noted that at time ¢ = 1,
if no priori knowledge of the image is available, we solve
using ¢; minimization thus requiring more samples to achieve
a perfect reconstruction.

Algorithm 1 Reconstruction of a sequences of sparse signals
varying with time using Weighted-CS.

Input: ® and y.
output: g*),
1) If t =1 then
gt = argmin{HGHZ1 subject to ®Mg =y
2y t=t+1;
3) SV = {ke{l,---,n}: GV 20}
4) Compute p') := [pgt), - ,pgf)] from (6).
5) Compute W) from (5).
6) gt) = argmin{HW(t)GHe1 subject to &g =y®};
7) Go to step 2

IV. EXPERIMENTAL RESULTS

We tested our algorithm on 5 sequences of MRI images of
the foot, knee, ankle, neck (all of size 512 x 512 x 20 ) and
skull base (512 x 512 x 40 ), obtained from [14]. Figure 3
shows some of these MRI images.

For the first image in each sequence, ¢ = 1, since no priori
knowledge is available, 30% of samples are taken along 150
radial lines in the Fourier domain (see sampling mask in figure
4(a)) while in the successive frames, only 10% of samples are
taken along 50 radial lines (figure 4(b)) . The reconstruction
is carried out in the Wavelet domain which is assumed to be
the sparse domain.

Figure 5(a)-(e) compares the reconstruction performance
of the Weighted-CS with o set to 12 for MRI sequences



Fig. 3.

Sample images of MRI sequences.

with those obtained using the modified-CS, priori-CS and
/1 minimization (CS). It can be seen that our method out-
performs the other methods significantly in terms of the
improved PSNR.

V. CONCLUSION

We have employed a Weighted-CS based method to recon-
struct sequences of MRI images from a lower that conven-
tionally possible number of samples. Our method uses the
image of the previous time instance to efficiently reconstruct
the current image of interest using a weighted-¢; minimiza-
tion. Our experimental results on MRI datasets, has shown
that our algorithm can achieve a significant reduction in the
number of samples needed compared to the other state-of-
art CS algorithms. One possible extension of our work would
be to use different measures of sparsity such as [15], [16]
or [17], to further reduce the number of samples needed.

Fig. 4. Sampling mask for (a) t=1 (b) subsequent frames.

Another interesting challenge would be to develop fast iterative
schemes for real-time implementation of Weighted-CS on MRI
scanners.
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