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Abstract— The (t, n) visual cryptography (VC) is a secret 

sharing scheme of decomposing a secret image into n 

transparencies, and the stacking of any t out of n transparencies 

reveals the secret content. The perfect security condition of VC 

scheme requires the strict requirement where any t1 or fewer 

transparencies cannot extract any information about the secret. 

For n approaching infinity, previous studies consider the 

scenario where the probabilistic model is a pixel-to-pixel scheme 

that encodes each secret pixel to a corresponding pixel in each 

transparency. In this paper, we extend the pixel-to-pixel scheme 

to pixel-to-block scheme for the cases t=2 and 3. Given a secret 

image, the proposed VC scheme generates a transparency 

through coding each secret image pixel to a m-pixels shadow 

block on the corresponding position of the transparency. 

Experiments show that the stacking results reveal better visual 

quality than the probabilistic model scheme. 

I. INTRODUCTION 

The visual cryptography (VC) is a kind of secret sharing 

which admits that the decoding is performed without 

computations. Given a secret image, the (t, n) VC scheme 

converts the secret image into n noise-like transparencies, so 

that we cannot see the secret content from any one 

transparency. In general, the (t, n) VC scheme possess the 
property that the secret can be revealed by stacking of 

arbitrary t out of those n transparencies, but any t1 or fewer 
transparencies cannot retrieve any information through visual 

perception or signal analysis techniques. The basis matrices 

model of the (t, n) VC scheme is first presented by Naor and 

Shamir [1]. Later, the extension works, including the 

probabilistic models [2]-[4], and general access structures [5], 

[6], had been further studied. 

However, the basis matrices model is not suitable for large 

n, because the size of basis matrices grows very fast. 

Moreover, the basis matrices cannot properly describe the 

coding scheme for unbounded n; i.e., n. Thus, Lin and 
Chung [7] proposed the probabilistic model of (t, n) VC 

scheme for unbounded n. The scheme follows the 

probabilistic model to generate the unexpanded transparency 

for the case (t, n). Each secret pixel is coded into a pixel 
in each transparency. To achieve the optimal contrast, the [7] 

also gives the parameter setup for t = 2 to 6. However, as 

shown in the experiment of [7], the t = 2 or 3 is suggested in 

practice, and for t4, the contrast is very low so that the 
stacking result is visually insignificant. 

For each transparency generated by the probabilistic VC 

scheme, each pixel in the transparency is decided by an 

arbitrary chosen column in the basis matrices. Thus, the 

stacking result by the probabilistic model is more untidy than 

the basis matrices model, which uses the whole basis matrix 

to code a secret pixel. This observation gives the motivation 

of this paper. In this paper, we extend the pixel-to-pixel 

scheme to pixel-to-block scheme for the cases t=2 and 3. The 

extended scheme will expand the size of the transparencies, as 

contrasted to the scheme [7] with invariant expansion. As 
shown in experiments, the stacking results of the proposed 

scheme give better visual quality than the scheme of [7]. 

The rest of this paper is organized as follows. In Section II, 

we introduce the formal definitions of VC and the 

probabilistic model of (t, n) VC scheme for unbounded n [7]. 

In Section III, we give the major scheme extended from [7]. 

Section IV shows the experiments. Section V gives the 

conclusion of this paper. 

II. DESCRIPTION OF VC SCHEME 

Given a binary secret image S, the (t, n) VC scheme 

converts each secret pixel s{white, black} in S to n blocks at 
the corresponding positions of n transparencies T1, T2,…, Tn, 

respectively. The basis matrices B0 and B1 are a pair of nm 
Boolean matrices, which identify the mapping function 
turning a secret pixel s into n blocks with size m. Each sub-

pixel in a block is opaque or transparent, and we use 0 or 1 to 

indicate a transparent sub-pixel or opaque sub-pixel in this 

paper. When two sub-pixels are stacked with matching 

positions, the representation of the stacking result may be 

transparent if the two sub-pixels are both transparent. 

Otherwise, the stacking result is opaque. Let the  denote the 
stacking operation, we have 

00=0, 01=1, 10=1, 11=1. 

It can be shown that  is equivalent to the bitwise operation 

OR.  
For the basis matrices B0 and B1, each row in the basis 

matrices corresponds to an encoded block, and the elements in 

each row represent the sub-pixels. For the s being white or 

black, the dealer respectively permutes the matrix B0 or B1 

within uniform probability, and then sends each row of the 

matrix to each Ti.  

The basis matrices are required to meet the conditions 
described in Definition 1. Let H(v) denote the hamming 
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weight of a (0, 1)-vector v (i.e. the number of ones in v). 

Definition 1: A (t, n) VC scheme with m sub-pixels and 

contrast α>0 can be represented as two nm Boolean matrices 
B0 and B1. A valid VC scheme is required to meet the 

following conditions [1]:  

i). Given the stacked v0 of any t out of the n rows in the matrix 

B0, and the stacked v1 of any t out of the n rows in the matrix 

B1, the inequality holds: H(v1)H(v0)αm. 

ii). For any k-element subset {i1, i2,…, ik}{1, 2,…, n} and 
k<t, the two collections containing m columns obtained from 

the rows i1, i2,…, ik in B0 and B1 are indistinguishable in the 

sense that the two collections contain the same columns. 

The condition (i) defines the contrast requirement. In 

general, a larger α gives better visual distinguishability in the 

stacking results. The condition (ii) defines the security 
requirement. A valid VC must prevent the secret pixels from 

being revealed by analyzing the probability distribution of the 

patterns appearing in k transparencies for k<t. 

In the scenario where n approaches infinity, the size of 

basis matrices is also infinity, so the construction of basis 

matrices is impractical. Thus, the [7] employs another 

framework, called probabilistic model [2], to identify the 

coding function. Instead of the ordinary method using a row 

in basis matrices, the probabilistic model only uses one sub-

pixel to represent one secret pixel. For the infinite n, the [7] 

uses a pair of vectors X=(x0, x1,…, xt) and Y=(y0, y1,…, yt) to 

represent the coding function. Let E(xi) denote a memoryless 
binary sequence where the probability of assigning each 

element to 0 is xi. The |yi| is the probability of using the 

memoryless sequence E(xi) to encode a secret pixel s, where 

yi>0 for s=white and yi<0 for s=black. For t = 2 and 3, the [7] 

gives the parameter setup for optimal contrast: 

For t=2, Y=(1/2, 1, 1/2), X=(0, 1/2, 1), =1/4. (1) 

For t=3, Y=(1/3, 2/3, 2/3, 1/3), X=(0, 1/4, , 3/4, 1), 

=1/16. 

(2) 

Since the stacking result of t4 is visually insignificant and 

the study of t4 is only of theoretical interests, so this paper 
only focus on the two cases t= 2 and 3. 

III. THE PROPOSED ALGORITHM 

A. The case t=2 

In this case, the [7] gives an algorithm to achieve the 

contrast =1/4 by using the parameters (1). The algorithm 
generates a transparency T by using the index table Z. The 

size of Z is equivalent to the secret image S, and each element 

Z[w, h] is the index of the used memoryless sequence E(xZ[w, 

h]) to encode the secret pixel s[w, h]. For t=2, the Z[w, h] has 

two possible values 0 and 1, and P(Z[w, h]=0)=1/2. Given a 
secret image S, the dealer reads each secret pixel S[w, h] in S. 

If S[w, h] is white, the dealer assigns the value Z[w, h] to the 

transparency T[w, h]. Otherwise, if S[w, h] is black, the dealer 

assigns a random Boolean value to the transparency T[w, h] 

and P(Ti[w, h]=0)=1/2. 

To extend the above pixel approach to block approach, we 

observe that for the white secret pixel, the dealer uses an all-

zero sequence or an all-one sequence to encode the white 

secret pixel, and the two possible cases are determined by the 

corresponding element in Z. In the block approach, we 

simultaneously represent the two cases in a block with size 

two. More precisely, for a white secret pixel, we use [0, 1] or 

[1, 0] to code the white pixel, and the two cases are 

determined by the corresponding element in the index table R 

used in the proposed algorithm. Each element in R is a 

Boolean integer where P(R[w, h] = 0) = P(R[w, h] = 1) = 1/2. 

For a black secret pixel, we randomly choose [0, 1] or [1, 0] 

to code the black pixel. The details are described in Algoithm 

1: 
 

Algorithm 1. The algorithm of the proposed scheme for t=2. 

Input: A binary secret image S and an index table R. 

Output: A transparency T. 

1 for each pixel S[w, h] in S do 

2  if S[w, h] = white then 

3   if R[w, h] = 0 then 

4    T[w, h] = [0, 1] 

5   else if R[w, h] = 1 then 

6    T[w, h] = [1, 0] 

7   end if 

8  else if S[w, h] = black then 

9   Assign randomly T[w, h] to [0, 1] or [1, 0] where P(T[w, 

   h]= [0, 1])=1/2. 

10  end if 

11 end for 

For the security of Algorithm 1, we observe that P(T[w, h] 

= [0, 1]) = P(T[w, h] = [1, 0]) = 1/2, regardless of the color of 
the secret pixel S[w, h]. Thus, the owner cannot decode the 

secret by analyzing the probability distribution of the two 

patterns [0, 1] and [1, 0] in any one transparency. 

B. The case t=3 

In this case, the [7] gives an algorithm to achieve the 

contrast =1/16 by using the parameters (2). Initially, we 
require the index table Z. By the Y defined in (2), each 

element of Z is randomly assigned to two possible values {0, 

1}, by following the probabilities P(Z[w, h]=0)=1/3 and 

P(Z[w, h]=1)=2/3. Given a secret image S, the dealer reads 

each secret pixel S[w, h] in S. For S[w, h] being white, the 

dealer next reads the value Z[w, h]. If Z[w, h] = 0, the dealer 

assigns 0 to the T[w, h]; otherwise, if Z[w, h] = 1, the dealer 
assigns a random Boolean number to the T[w, h], where 

P(T[w, h]=0)=3/4. For S[w, h] being black, the dealer next 

reads the value Z[w, h]. If Z[w, h] = 0, the dealer assigns 1 to 

the T[w, h]; otherwise, if Z[w, h] = 1, the dealer assigns a 

random Boolean number to the T[w, h], where P(T[w, 

h]=0)=1/4. 

To extend the above pixel approach to block approach, we 

observe that for the white secret pixel, the [7] uses an all-zero 

sequence E(1) or an memoryless sequence E(1/4) to encode 

the white secret pixel, and the two possible cases are 

determined by the corresponding element in Z. In the block 

approach, we simultaneously represent the two cases E(1) and 
E(1/4) in a block with size six. The block is divided into two 

sub-blocks, where each sub-block denotes one of the two 

cases E(1) and E(1/4). Since the case of choosing E(1) has a 



probability 1/3 and the case of choosing E(1/4) has a 

probability 2/3, to reflect the probabilities in the block, the 

case E(1) corresponds to the two-pixel sub-block, and the case 

E(1/4) corresponds to the four-pixel sub-block. Moreover, to 

represent the E(1/4) in the four-pixel sub-block, we assign a 

permutation of [1,1,1,0] to the four-pixel sub-block. 

For the black secret pixel, the [7] uses an all-one sequence 

E(0) or an memoryless sequence E(3/4) to encode the black 

secret pixel, and the two possible cases are determined by the 

corresponding element in Z. In the block approach, we 

simultaneously represent the two cases E(0) and E(3/4) in a 
block with size six. Since the case of choosing E(0) has a 

probability 1/3 and the case of choosing E(3/4) has a 

probability 2/3, the case E(0) corresponds to the two-pixel 

sub-block, and the case E(3/4) corresponds to the four-pixel 

sub-block. Moreover, we assign a permutation of [0,0,0,1] to 

the four-pixel sub-block to represent the E(3/4). 

To possess the security condition in the proposed method 

for t=3, we need to uniformly permute the positions of the 

pixels in the block. Since the pixel permutation in each sub-

block is mutually independent for each transparency in 

encoding, the index table R only needs to record the 
permutation of two categories of pixels in a block: the first 

category has four pixels and another category has two pixels. 

There are (
 
 
)=15 possible combinations of two sub-sets with 

two and four elements, so each element of R records a 

uniform random integer between 0 and 14. The details for the 

case t=3 are described in Algoithm 2: 

 

Algorithm 2. The algorithm of the proposed scheme for t=3. 

Input: A binary secret image S and an index table R. 

Output: A transparency T. 

1 for each pixel S[w, h] in S do 

2  if S[w, h] = white then 

3   Assign randomly T0 to a permutation of [1, 1, 1, 0] 

4   T1 = [0, 0] 

5   Assign T[w, h] to the permutation of T0 and T1 according 

   to R[w, h]. 

6  else if S[w, h] = black then 

7   Assign randomly T0 to a permutation of [0, 0, 0, 1] 

8   T1 = [1, 1] 

9   Assign T[w, h] to the permutation of T0 and T1 according 

   to R[w, h]. 

10  end if 

11end for 

IV. EXPERIMENTS 

Figure 1 depicts the binary secret image “CITI” used in our 

experiments. For the first experiment of t=2, because the 

generated transparencies double the size of image, we shrink 

the height of the original image to 1/2 shown in Fig. 2(a). 

Then we apply Algorithm 1 to Fig. 2(a) to generate two 

transparencies shown in Figs. 2(b-c). Figure 2(d) shows the 

stacking results. To compare the results with [7], Figure 3 

shows the stacking results of [7] for t=2. As compared Fig. 

2(d) with Fig. 3, we observe that Fig. 2(d) has better visual 

quality. 

The second experiment for t=3 is shown in Fig. 4. Since the 

transparencies of the proposed algorithm enlarge the original 

image to six times, to possess the invariant size property, we 

shrink the height of image to 1/3 and the width of image to 

1/2 shown in Fig. 4(a). Then we apply Algorithm 2 to Fig. 4(a) 

to generate three transparencies as shown in Figs. 4(b-d). 

Figures. 4(e-g) show the stacking results of any two 

transparencies, and Fig.4 (h) shows the stacking of the three 

transparencies. Figure 5 shows the stacking result of [7] for 
t=3. As compared Fig. 4(h) with Fig. 5, we observe that Fig. 

4(h) show better quality of the word “CITI” than Fig. 5. 

Furthermore, we also test another binary secret image 

shown in Fig. 6. Figure 6(a) is the test image “ACADEMIA 

SINICA”. For the case t=2, Figures 6(b) and 6(c) respectively 

show the stacking results of [7] and the proposed method. For 

the case t=3, Figures 6(d) and 6(e) respectively show the 

stacking results of [7] and the proposed method. 

Consequently, we can recognize the letters shown in Fig. 6(e), 

but the letters in Fig. 6(d) are indistinct. 

V. CONCLUSIONS 

We have proposed the block approach of (t, n) VC 

scheme for unbounded n and t=2, 3. A major drawback of the 

block approach VC is that the transparencies are much larger 

than the original image, so we need to shrink the size of secret 

image to possess the invariant size property. As compared the 

block approach VC with the probabilistic model VC, the 

block approach VC gives better visual quality under the same 

parameter setup. For t=3, the block VC is more practical 

because the contours shown in Fig. 4(h) and Fig. 6(e) are 

more clear than Fig. 5 and Fig. 6(d). 

 

 
Fig. 1. The binary secret image “CITI”. 
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Fig. 2. The results of the proposed scheme for t=2. (a). T1. (b). T2. (c). T1T2. 



 
Fig. 3. The stacking result of [7] for t=2. 
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Figure 4. The results of the proposed scheme for t=3. (a). T1. (b). T2. (c). T3. 

(d). T1T2. (e). T1T3. (f). T2 T3. (g). T1T2T3. 

 
Figure 5. The stacking result of [7] for t=3. 
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Figure 6. The results for another secret image. (a). The test secret image. (b). 

The stacking result of [7] for t=2. (c). The stacking result of Algorithm 1 for 

t=2. (d). The stacking result of [7] for t=3. (c). The stacking result of 

Algorithm 2 for t=3. 
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