
Multikernel Adaptive Filters With Multiple
Dictionaries and Regularization

Taichi Ishida∗ and Toshihisa Tanaka∗
∗Department of Electrical and Electronic Engineering,

Tokyo University of Agriculture and Technology,
2-24-16, Nakacho, Koganei-shi, Tokyo, Japan

E-mail: tishida@sip.tuat.ac.jp, tanakat@cc.tuat.ac.jp
Tel: +81-42-388-7123

Abstract—We discuss a method of regularization and a con-
struction method of dictionary which have a high degree of
freedom within the framework of multikernel adaptive filtering.
The multikernel adaptive filter is an extension of the kernel
adaptive filter using multiple kernels. Hence, it has offers higher
performance than the kernel adaptive filter. In this paper, we
focus on the fact that the multikernel adaptive filter determines
a subspace in the sum of multiple reproducing kernel Hilbert
spaces (RKHSs) associated with different kernels. Based on this,
we propose a novel method to individually select appropriate
input signals in order to construct dictionary which determines
the subspace. Furthermore, based on the fact that any unknown
filter is an element in RKHS, we propose L2 regularization in
order to avoid overadaptation. Also, we derive an algorithm
that fixes the dictionary size in order to construct an efficient
adaptive algorithm. Numerical examples show the efficiency of
the proposed method.

I. Introduction

Filters that approximate or track unknown systems that
change from time to time are known as adaptive filters [1].
Adaptive filtering is a challenging technique which has been
applied to system identification, noise or echo cancellation,
and signal prediction. Depending on whether the system (to
which the filter attempts to adapt) is linear or nonlinear, the
hypothesized model changes. There are a number of research
results regarding nonlinear adaptive filters. In particular, a
well-known filter is the adaptive Volterra filter [2]–[4]. More-
over, in recent years, the efficiency of kernel adaptive filters
has become well-known [5]–[13].

The kernel adaptive filter is a nonlinear adaptive filter that
also makes effective use of kernel methods, which are one of
the techniques to construct effective nonlinear systems with
a reproducing kernel Hilbert space (RKHS) [14], [15] and a
positive definite kernel [14], [15]. In this case, the filter is an
element in the RKHS and output of the system is modelled as
inner product of the filter and nonlinear mapping of the input
signal. By using kernel methods, we maintain the advantage
of using linear methods, while applying them to nonlinear
mapping of the input signal. That is, even though the inner
product in a higher dimensional feature space to which this
mapping belongs cannot be computed explicitly, it is possible
to compute the inner product through the use of a RKHS

as a higher dimensional feature space, with its corresponding
kernel.

Since the kernel adaptive filter is represented by the linear
sum of kernels corresponding to observed input signals, the
adaptive algorithm is intended to estimate coupling coefficients
of kernels. Hence, as the number of observed input signals
increases, the computational load increases due to linearly
growing dimension of the subspace. Furthermore, the filter will
be prone to overadaptation (or overfitting) due to increasing
model dimension. Therefore, it has been proposed [8] to a
reduction method of a number of kernels to design the filter
by constructing a set of functions called a dictionary, using
a coherence threshold. This method judges whether to add
the kernel corresponding to an observed input signal to the
dictionary at each time instant. Thus, the observed input signal
similar to a signal in the dictionary is discarded. This method
makes it possible to prevent overadaptation, and to reduce the
computation time in updating the filter.

A multikernel adaptive filter is a modified version of the
kernel adaptive filter [16], [17]. The multikernel adaptive
filter estimates unknown systems adaptively using multiple
different kernels. It offers higher performance than the kernel
adaptive filter. Moreover it has been reported that the multik-
ernel adaptive filter can be applied to nonstationary nonlinear
systems [16].

Considering the multikernel adaptive filter within the frame-
work of RKHS, it can be seen that the output of the multikernel
adaptive filter is represented by the inner product in RKHS
determined by a sum of multiple kernels. However, in spite of
using the multiple different kernels, a common dictionary is
used for all kernels [16]. In this paper, we focus on the fact that
the output signal is estimated by the inner product in RKHS
determined by the sum of kernels. Based on this, we propose
to construct a dictionary independently in each RKHS. Hence,
adaptation performance is improved since each subspace is
constructed in each RKHS. Moreover we define the cost
function with L2 regularization, and weight coefficients of
the filter are updated by this cost function, because the filter
may cause overadaptation by increasing degrees of freedom
of the filter. Furthermore we propose an algorithm that fixes
the dictionary size in order to effectively adapt nonstationary

nonlinear systems. Numerical examples show the efficiency of
the proposed method.

II. Kernel Adaptive Filters

In this section, we describe kernel adaptive filters and a
multikernel adaptive filter.

A. Kernel Adaptive Filters

Kernel adaptive filters are an extension of linear adaptive
filters by kernel methods. In what follows, we describe the
kernel least mean square (KLMS) algorithm [6] and the kernel
normalized least mean square (KNLMS) algorithm [8].

1) The KLMS Algorithm: Let U ⊂ RL, u ∈ U, and F
denote the input space, the input signal, and the higher feature
space respectively. Suppose that the output of system is given
by the inner product f (u) = 〈Ω, φ(u)〉 of the filter Ω ∈ F
with a nonlinear mapping of an input signal φ(u) ∈ F . We
consider the problem of adaptively estimating filter Ω. The
output signal at time instant k ∈ N can be written with filter
Ωk ∈ F as

yk = f (uk) = 〈Ωk, φ(uk)〉. (1)

Let dk ∈ R denote the desired signal, as well as the LMS
algorithm [1], the estimation error is represented as

ek = dk − 〈Ωk, φ(uk)〉, (2)

hence, the filter is updated as follows:

Ωk+1 = Ωk + µekφ(uk), (3)

where, if Ω0 := 0, (1) can be rewritten as

yk = 〈Ωk, φ(uk)〉 = µ
k−1∑
i=1

ei〈φ(ui), φ(uk)〉. (4)

Generally, it is difficult to explicitly compute the inner product.
However, it is possible to compute the inner product easily
through the use of a RKHS H as higher dimensional feature
space F . Let κ(·, ·) : U×U → R denote the kernel of H and
inner product 〈φ(ui), φ(uk)〉H is given as

〈φ(ui), φ(uk)〉H = κ(ui,uk). (5)

In terms of the kernel, the output is rewritten as

yk = 〈Ωk, φ(uk)〉H = µ
k−1∑
i=1

eiκ(ui,uk). (6)

For example, polynomial kernel and Gaussian kernel are used
as the kernel [6]. Figure 1 shows a conceptual diagram of
the kernel adaptive filter. As shown in Fig. 1, the input uk is
mapped by φ(·), and the output is given by the inner product
with Ωk. Then, the filter Ωk is updated to reduce the error.

�
�

�

����� ������

	
��

��������

Fig. 1. Conceptual diagram of kernel adaptive filters

2) The KNLMS Algorithm: (6) can be rewritten as

yk =

k∑
i=1

hiκ(ui,uk) = h>k κk, (7)

where, hk := [h1, . . . , hk]> is weight vector, κk :=
[κ(u1,uk), . . . , κ(uk,uk)]>. Also, Ωk is represented as

Ωk =

k∑
i=1

hkκ(ui, ·). (8)

Essentially, updating Ωk is equivalent to updating hk. There-
fore, the updating equation can be written by using the NLMS
algorithm [1] as follows:

hk+1 = hk +
η

ρ + ‖κk‖2
(dk − h>k κk)κk, (9)

where η and ρ are a step size parameter and a stabilization
parameter respectively.

3) Coherence-Based Sparsification: As seen from (8), the
filter is represented by the sum of kernels associated with
all of past input signals. Hence, as the number of observed
input signals increases, not only does the computational burden
grow, but also infinite memory size is required in principle.
Therefore, the filter may lead to overadaptation. For this
problem, in [8], the number of kernels restricted by using
coherence-based sparsification. In what follows, we describe
KNLMS algorithm with coherence-based sparsification.

The coherence-based sparsification constructs a set of func-
tions called a dictionary using a coherence threshold in order
to restrict a number of kernels. Let Jk := { j(k)

1 , j(k)
2 , . . . , j(k)

rk } ⊂
{0, 1, . . . , k − 1} indicate the dictionary {κ(·,u j)} j∈Jk . Here,
rk := |Jk | is the dictionary size with |·| denoting the cardinality
of a set. Then, the output signal is given by

yk =
∑
j∈Jk

h j,kκ(u j,uk). (10)

Moreover, it can be written simply as

yk = h>k κk, (11)

where
hk := [h j(k)

1 ,k
, h j(k)

2 ,k
, . . . , h j(k)

rk ,k
]> ∈ Rrk , (12)

κk := [κ(u j(k)
1
,uk), κ(u j(k)

2
,uk), . . . , κ(u j(k)

rk
,uk)]> ∈ Rrk . (13)

If the initial value of weight vector is h0 := 0 and the
coherence threshold is δ > 0, the update rule is then given
as follows:

1) If max
j∈Jk

|κ(uk,u j)| > δ

Jk+1 = Jk, (14)

hk+1 = hk +
η

ρ + ‖κk‖2
(dk − h>k κk)κk; (15)

2) If max
j∈Jk

|κ(uk,u j)| ≤ δ

Jk+1 = Jk ∪ {k}, (16)

hk+1 = h̄k +
η

ρ + ‖κ̄k‖2
(dk − h̄>k κ̄k)κ̄k, (17)

where η and ρ are a step size parameter and a stabilization
parameter respectively. Also, κ̄k := [κ>k , κ(uk,uk)]>, h̄k :=
[h>k , 0]>. Namely, this rule with the coherence threshold judges
whether to add the kernel generated by the observed input
signal to the dictionary at each time instant. The kernel is
added to the dictionary if necessary, or discarded if not needed.
Consequently, the filter is an element in the subspace that is
spanned by the dictionary.

B. Multikernel Adaptive Filters
A multikernel adaptive filter is a modified version of the ker-

nel adaptive filter by using multiple different kernels, it offers
higher performance than the single kernel adaptive filter and
moreover it can be applied to nonstationary nonlinear systems.
In what follows, we describe the multikernel NLMS algorithm
with coherence-based sparsification (MKNLMS-CS) [16] that
is an extension of the KNLMS algorithm described in Section
II-A3.

Assume that M different kernels {κm(·, ·)}m∈M are given.
Here, M := {1, 2, . . . ,M}. Let Jk := { j(k)

1 , j(k)
2 , . . . , j(k)

rk } ⊂
{0, 1, . . . , k−1} indicate the dictionary {κm(·,u j)}m∈M, j∈Jk . Here,
rk := |Jk | is dictionary size. In this case, the output signal is
defined as

yk =
∑
m∈M

∑
j∈Jk

h(j)
m,kκm(uk,u j). (18)

Furthermore we estimate {h(j)
m,k}, where, we define hm,k and

κm,k as follows:

hm,k := [h(j(k)
1)

m,k , h
(j(k)

2)
m,k , . . . , h

(j(k)
rk)

m,k]> ∈ Rrk , (19)

κm,k := [κm(u j(k)
1
,uk), κm(u j(k)

2
,uk), . . . , κm(u j(k)

rk
,uk)]> ∈ Rrk .

(20)
The output is rewritten as

yk =
∑
m∈M

h>m,kκm,k. (21)

If the initial value of weight vector is hm,0 := 0 and the
coherence threshold is δ > 0, the update rule is then given
as follows:

1) If max
m∈M

max
j∈Jk

|κm(uk,u j)| > δ

Jk+1 = Jk, (22)

hm,k+1 = hm,k +
η

ρ +
∑

m∈M
‖κm,k‖2

(dk − yk)κm,k; (23)

2) If max
m∈M

max
j∈Jk

|κm(uk,u j)| ≤ δ

Jk+1 = Jk ∪ {k}, (24)

hm,k+1 = h̄m,k +
η

ρ +
∑

m∈M
‖κ̄m,k‖2

(dk − yk)κ̄m,k, (25)

where η and ρ are a step size parameter and a stabiliza-
tion parameter respectively. Also, κ̄m,k := [κ>m,k, κm(uk,uk)]>,
h̄m,k := [h>m,k, 0]>. Note that, if M = 1, the MKNLMS-CS
algorithm coincides with the KNLMS algorithm.

III. Multikernel Adaptive FiltersWithMultiple
Dictionaries and Regularization

In this section, we give a representation of multikernel adap-
tive filters in terms of a RKHS and propose the multikernel
adaptive filter with multiple dictionaries and regularization.
Then we derive the associated algorithm. First, we indicate that
the multikernel adaptive filter in [16] is an element in a RKHS
associated with a sum of different kernels, Moreover, we
describe the RKHS as a sum space of RKHS associated with
each kernel. Based on this, we show that it is possible to design
a filter that has a high degree of freedom by constructing
the dictionary in each RKHS. Furthermore, we discuss L2
regularization in order to prevent overadaptation. Finally, we
derive an algorithm that fixes the dictionary size in order to
construct an efficient adaptive algorithm.

A. The Sum Space of RKHS

We describe the sum space of RKHS [18] in order to
discuss a space in which a multikernel adaptive filter exist.
We consider the case of sum space of two RKHS, for the
sake of ease without loss of generality.

1) Norm: Let H and ‖ · ‖H denote RKHS and the norm of
H respectively. Moreover, H1 ⊕H2 denotes the direct sum of
RKHS of H1 and H2, it is represented as H. In this case, the
norm of direct sum f = (f1, f2) ∈ H of f1 ∈ H1 and f2 ∈ H2
is represented as follows [18]:

‖ f ‖2H := ‖ f1‖2H1
+ ‖ f2‖2H2

. (26)

In particular, if H1 ∩ H2 = {0}, the sum space H̃ := { f =
f1 + f2 | f1 ∈ H1, f2 ∈ H} is isomorphic to the direct space
H [18]. Consequently, the norm in H̃ is represented as

‖ f ‖2H̃ := ‖ f1‖2H1
+ ‖ f2‖2H2

. (27)

2) Reproducing Property: Let the kernel of H1 and H2
denote κ1 and κ2 respectively. The value of any f ∈ H̃ can be
evaluated by the kernel κ = κ1 + κ2 [18]

f (u) = 〈 f , κ(·, u)〉H̃
= 〈 f1, κ1(·, u)〉H1 + 〈 f2, κ2(·, u)〉H2 . (28)

B. Multikernel Adaptive Filters With Multiple Dictionaries
and Regularization

Assume that M different kernels {κm(·, ·)}m∈M are given.
Here, M := {1, 2, . . . ,M}. Also, let Hm and H denote RKHS
determined by the mth kernel and the sum space. In this case,
from (28), the output is represented with the filter Ωk ∈ H
and nonlinear mapping of input φ(uk) ∈ H as

yk = 〈Ωk, φ(uk)〉H
=
∑
m∈M
〈Ωm,k, φm(uk)〉Hm . (29)

Ωm,k can be constructed in each Hm. Hence, Ωk is the sum of
Ωm,k in Hm. Therefore, we can consider

Ωm,k =
∑

j∈Jm,k

h(j)
m,kκm(·,u j). (30)

Thus, there is no need for the index set of dictionary in
each RKHS to equalize. Let Jm,k := { j(k)

1 , j(k)
2 , . . . , j(k)

rm,k } ⊂
{0, 1, . . . , k − 1} indicate the mth dictionary {κm(·,u j)} j∈Jm,k .
Here, rm,k := |Jm,k | is the mth dictionary size. Then in the
MKNLMS-CS algorithm,

Jn,k = Jl,k (∀n,∀l ∈ M, n , l), (31)

while, in the case described in (30),

Jn,k , Jl,k (∀n,∀l ∈ M, n , l). (32)

Consequently, it can be said that the filter Ωk given by (30)
has a high degree of freedom and generality. The output is
rewritten by using the Ωk as

yk =
∑
m∈M

∑
j∈Jm,k

h(j)
m,kκm(uk,u j). (33)

Moreover, it can be written simply as

yk =
∑
m∈M

h>m,kκm,k, (34)

where,

hm,k := [h(j(k)
1)

m,k , h
(j(k)

2)
m,k , . . . , h

(j(k)
rm,k)

m,k]> ∈ Rrm,k , (35)

κm,k := [κm(u j(k)
1
,uk), κm(u j(k)

2
,uk), . . . , κm(u j(k)

rm,k
,uk)]> ∈ Rrm,k .

(36)
Next, we discuss the cost function used to determine the

filter. For simplicity, we choose L2 norm, and apply regular-
ization for Ωm,k in order to avoid overadaptation. We define the

cost function in order to update weight vector hm,k as follows:

Ck := |dk − 〈Ωk, φ(uk)〉H |2 +
∑
m∈M
λm‖Ωm,k‖2Hm

=

∣∣∣∣∣∣∣dk −
∑
m∈M
〈Ωm,k, φm(uk)〉Hm

∣∣∣∣∣∣∣
2

+
∑
m∈M
λm‖Ωm,k‖2Hm

=

∣∣∣∣∣∣∣dk −
∑
m∈M
〈Ωm,k, φm(uk)〉Hm

∣∣∣∣∣∣∣
2

+
∑
m∈M
λm

〈 ∑
j∈Jm,k

h(j)
m,kκm(·,u j),

∑
j∈Jm,k

h(j)
m,kκm(·,u j)

〉
Hm

=

∣∣∣∣∣∣∣dk −
∑
m∈M
〈Ωm,k, φm(uk)〉Hm

∣∣∣∣∣∣∣
2

+
∑
m∈M
λm

∑
j∈Jm,k

∑
j∈Jm,k

h(j)
m,kh(j)

m,k〈κm(·,u j), κm(·,u j)〉Hm

=

∣∣∣∣∣∣∣dk −
∑
m∈M

h>m,kκm,k

∣∣∣∣∣∣∣
2

+
∑
m∈M
λmh>m,kKm,khm,k, (37)

where the second term in the right-hand side of the cost
function is the L2 regularization term, and also, Km,k and λm

are a Gram matrix and a regularization parameter of the mth
kernel respectively.

If the initial value of weight vector is hm,0 := 0 and the
coherence threshold is δm > 0, by using (37), the update rule
is then given as follows:

1) If max
j∈Jm,k

|κm(uk,u j)| > δm

Jm,k+1 = Jm,k, (38)

hm,k+1 = hm,k + η
(dk − yk)κm,k − λmKm,khm,k

ρ +
∑

m∈M
‖κm,k‖2

; (39)

2) If max
j∈Jm,k

|κm(uk,u j)| ≤ δm

Jm,k+1 = Jm,k ∪ {k}, (40)

hm,k+1 = h̄m,k + η
(dk − yk)κ̄m,k − λmK̄m,kh̄m,k

ρ +
∑

m∈M
‖κ̄m,k‖2

, (41)

where η and ρ are a step size parameter and a stabiliza-
tion parameter respectively. Also, κ̄m,k := [κ>m,k, κm(uk,uk)]>,
h̄m,k := [h>m,k, 0]>. K̄m,k is a Gram matrix of κ̄m,k. We name the
above proposed algorithm the multikernel NLMS algorithm
with multiple dictionaries and coherence-based sparsification
(MKNLMS-MDCS).

Finally, we discuss an update rule if the dictionary
size is fixed. Let Lm denote a dictionary size in Hm. If
max
j∈Jm,k

|κm(uk,u j)| ≤ δm is satisfied, and the dictionary exceeds

the size Lm (thus |Jm,k | = Lm), we delete the oldest kernel in
the dictionary. In this case, the above update rule 2) is replaced
by what follows:

2)’ If max
j∈Jm,k

|κm(uk,u j)| ≤ δm

Jm,k+1 =

Jm,k ∪ {k} (|Jm,k | < Lm)
(Jm,k ∪ {k}) −minJm,k (|Jm,k | = Lm),

(42)
hm,k+1 is updated by (41) with

κ̄m,k := [κ̃>m,k, κm(uk,uk)]>, (43)

h̄m,k := [h̃>m,k, 0]>, (44)

where κ̃m,k and h̃m,k are the deleted first element κm,k and
hm,k respectively. We name this algorithm the multikernel
NLMS algorithm with multiple dictionaries fixed dictionary
size (MKNLMS-MDF). This rule deletes unnecessary kernels
(kernels generated by the system prior to the switch). Hence,
the algorithm is practical because memory size can be fixed,
and it can be applied effectively for nonstationary nonlinear
systems.

Note that, as the number of different kernels, M, increases,
the memory usage of the proposed algorithms increases unlike
the MKNLMS-CS algorithm. However, the computational
complexity of the proposed and MKNLMS-CS algorithms can
get almost similar by adjustment of coherence thresholds.

IV. Numerical examples

This section demonstrates the efficiency of the proposed
method through two computer experiments. One demonstrates
the pure effect of using multiple dictionaries and L2 regular-
ization compared to the existing methods on online prediction
of a nonlinear system. The other demonstrates effect of the
update rule with fixed dictionary sizes on online prediction
of a nonstationary nonlinear system. In the experiments, we
adopt a Gaussian kernel as

κ(ui,uk) = exp(−ζ‖ui − uk‖2) (ζ ≥ 0). (45)

The MKNLMS-CS, the MKNLMS-MDCS, and the
MKNLMS-MDF algorithms employ two Gaussian kernels.
The parameters of two Gaussian kernels κ1(·, ·) and κ2(·, ·) are
ζ1 and ζ2 respectively. In this case, H1 ∩H2 = {0} is obvious
because different Gaussian kernels are linearly independent.

A. Online Prediction of a Nonlinear System

We consider the nonlinear system as follows [8]:

dk = (0.8 − 0.5 exp(−d2
k−1))dk−1

− (0.3 + 0.9 exp(−d2
k−1))dk−2 + 0.1 sin(dk−1π), (46)

where dk is the desired signal, whose initial value is
[d−1, d−2]> = [0.1, 0.1]>, and data size is 3000. Moreover, dk

is corrupted by noise sampled from a zero-mean Gaussian
distribution with standard deviation equal to 0.1. Input signals
are uk = [dk−1, dk−2]>. In the adaptation of the system, we
compare NLMS, KNLMS, MKNLMS-CS, and MKNLMS-
MDCS algorithms. The evaluation criteria adopted mean
square error (MSE). The MSE is calculated by taking an arith-
metic average over 100 independent realizations. Parameters of
each filter are given in Table I. Here, the coherence thresholds

TABLE I
Parameters

NLMS α = 1.0 × 10−2, β = 3.0 × 10−2

KNLMS1 η = 9.0 × 10−2, ρ = 3.0 × 10−2

δ = 0.95, ζ = 0.5
KNLMS2 η = 9.0 × 10−2, ρ = 3.0 × 10−2

δ = 0.36, ζ = 10
MKNLMS-CS η = 9.0 × 10−2, ρ = 3.0 × 10−2

δ = 0.885, ζ1 = 0.5, ζ2 = 10
MKNLMS-MDCS η = 9.0 × 10−2, ρ = 3.0 × 10−2

δ1 = 0.8, δ2 = 0.2, ζ1 = 0.5, ζ2 = 10
λ1 = 1.0 × 10−10, λ2 = 2.0 × 10−3

0 1000 2000 3000

10
�2

10
�1

10
0

M
S

E

N um ber o f Ite ra tions

MKNLMS-CS

MKNLMS-MDCS

KNLMS1

KNLMS2

NLMS KNLMS1 KNLMS2

MKNLMS-CSMKNLMS-MDCS

Fig. 2. Learning curves of NLMS, KNLMS, MKNLMS-CS and MKNLMS-
MDCS for the nonlinear system

of MKNLMS-CS and KNLMS were manually adjusted such
that the numbers of kernels forming the filter are almost the
same as that in the MKNLMS-MDCS.

Figure 2 shows the MSE at each iteration, where r denotes
the mean of the number of generated kernels. From Fig. 2, it
is seen that, thanks to the use of multiple dictionaries and L2
regularization, the MKNLMS-MDCS algorithm shows smaller
MSE than the others.

B. Online Prediction of a Nonstationary Nonlinear System

We use the following nonlinear model [16] to generate a
test signal:

d′k = (0.2 − 0.7 exp(−d′2k−1))d′k−1

− (0.8 + 0.8 exp(−d′2k−1))d′k−2 + 0.2 sin(d′k−1π), (47)

where, the initial value is [d′−1, d
′
−2]> = [0.1, 0.1]>, and data

size is 21000. Moreover, d′k is corrupted by noise sampled from
a zero-mean Gaussian distribution with standard deviation
equal to 0.1. The nonlinear system used in this simulation,
with d′k, is defined as

0 0.5 1 1.5 2 2.5

x 10
4

�15

�10

�5

0

5

10

15
A

m
p

lit
u

d
e

D ata num ber

Fig. 3. The generated signal by nonstationary nonlinear system

0 0.5 1 1.5 2 2.5

x 10
4

10
�2

10
�1

10
0

10
1

10
2

M
S

E

N um ber o f Ite ra tions

MKNLMS-MDCS

MKNLMS-MDF

Fig. 4. Learning curves of MKNLMS-MDCS and MKNLMS-MDF for the
nonstationary nonlinear system

dk =



d′k (k ≤ 3000)
d′k + 2 (3000 < k ≤ 6000)
d′k − 2 (6000 < k ≤ 9000)
d′k + 4 (9000 < k ≤ 12000)
d′k − 4 (12000 < k ≤ 15000)
d′k + 6 (15000 < k ≤ 18000)
d′k − 6 (18000 < k ≤ 21000).

(48)

Figure 3 shows a generated signal from the system. In
this experiment, we compare the MKNLMS-MDCS and the
MKNLMS-MDF algorithms in order to investigate efficiency
of the update rule with fixed dictionary sizes. The evaluation
criteria and parameters of filters are the same as Section IV-A.
Moreover, in the MKNLMS-MDF algorithm, the dictionary
sizes of κ1 and κ2 fixed 120 and 100 respectively.

Figure 4 shows the MSE at each iteration. From Fig. 4,
it is seen that the adaptation ability of the two approaches
is almost unchanged. However, an increase in efficiency (i.e.
decreased dictionary size for equal MSE) was noted with the

MKNLMS-MDF algorithm. The total of dictionary size in the
MKNLMS-MDF algorithm is fixed at 220 (the dictionary sizes
of κ1 and κ2 are 120 and 100 respectively), while the total of
dictionary size in the MKNLMS-MDCS algorithm was 427
(the dictionary sizes of κ1 and κ2 are 146 and 281 respectively)
on average. Hence, the MKNLMS-MDF algorithm is effective
for nonstationary nonlinear systems.

V. Conclusion
This paper proposed a multikernel adaptive filter with

multiple dictionaries and regularization. By using multiple
dictionaries and regularization, we showed that adaptation
ability can be improved by numerical examples. Moreover,
we proposed an algorithm that fixes the dictionary size and
we showed its effectiveness by numerical examples.

Acknowledgment
This work is supported in part by JSPS KAKENHI Grant

Number 23300069.

References
[1] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-

Hall, 2002.
[2] J. Lee and J. V. Mathews, “A fast recursive least squares adaptive second

order Volterra filter and its performance analysis,” IEEE Trans. Signal
Process., vol. 41, no. 3, pp. 1087–1102, 1993.

[3] R. D. Nowak and B. D. Van Veen, “Random and pseudorandom inputs
for Volterra filter identification,” IEEE Trans. Signal Process., vol. 42,
no. 8, pp. 2124–2135, 1994.

[4] ——, “Volterra filter equalization: A fixed point approach,” IEEE Trans.
Signal Process., vol. 45, no. 2, pp. 377–388, 1997.

[5] W. Liu, J. Principe, and S. Haykin, Kernel Adaptive Filtering. Hoboken,
NJ: Wiley, 2010.

[6] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
2004.

[7] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square
algorithm,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 543–554,
2008.

[8] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of
time series data with kernels,” IEEE Trans. Signal Process., vol. 57,
no. 3, pp. 1058–1067, 2009.

[9] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
2004.

[10] K. Slavakis, S. Theodoridis, and I. Yamada, “Adaptive constrained
learning in reproducing kernel Hilbert spaces: The robust beamforming
case,” IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4744–4764,
2009.

[11] A. Malipatil, Y.-F. Huang, S. Andra, and K. Bennett, “Kernelized set-
membership approach to nonlinear adaptive filtering,” in Proc. IEEE
ICASSP, 2005, pp. 149–152.

[12] J. Gil-Cacho, T. van Waterschoot, M. Moonen, and S. Jensen, “Nonlinear
acoustic echo cancellation based on a parallel-cascade kernel affine
projection algorithm,” in Proc. IEEE ICASSP, 2012, pp. 33–36.

[13] P. Bouboulis and S. Theodoridis, “Extension of Wirtinger’s calculus to
reproducing kernel Hilbert spaces and the complex kernel LMS,” IEEE
Trans. Signal Process., vol. 59, no. 3, pp. 964–978, 2011.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY: Springer, 2006.

[15] T. Tanaka, Y. Washizawa, and A. Kuh, “Adaptive kernel principal
components tracking,” in Proc. IEEE ICASSP, 2012, pp. 1905–1908.

[16] M. Yukawa, “Multikernel adaptive filtering,” IEEE Trans. Signal Pro-
cess., vol. 60, no. 9, pp. 4672–4682, 2012.

[17] Y. Nakajima and M. Yukawa, “Nonlinear channel equalization by multi-
kernel adaptive filter,” in Proc. IEEE SPAWC, 2012, pp. 384–388.

[18] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math. Soc.,
vol. 68, no. 9, pp. 337–404, 1950.

