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Abstract—In conventional speaker identification methods
based on mel-frequency cepstral coefficients (MFCCs), phase
information is ignored. Recent studies have shown that phase
information contains speaker dependent characteristics, and,
pitch synchronous phase information is more suitable for speaker
identification. In this paper, we verify the effectiveness of pitch
synchronous phase information for speaker identification in noisy
environments. Experiments were conducted using the JNAS
(Japanese Newspaper Article Sentence) database. The pseudo
pitch synchronized phase information based method achieved
a relative speaker identification error reduction rate of 15.5%
compared to the conventional phase information (that is pitch
non-synchronized phase). By cutting frames with low power
and combining phase information with MFCC, a furthermore
improvement was obtained.

I. INTRODUCTION

In conventional speaker identification methods based on
mel-frequency cepstral coefficients (MFCCs), only the magni-
tude of the Fourier Transform in time-domain speech frames
has been used. This means that the phase component is
ignored. MFCCs capture not only speaker-specific vocal tract
information, but also some vocal source characteristics. How-
ever, speaker characteristics in the voice source are not cap-
tured completely by the MFCC. Therefore, feature parameters
extracted from excitation source characteristics are also useful
for speaker identification [1]-[6]. Almost all of the existing
methods are based on Linear Predictive Coding (LPC) anal-
ysis. Markov and Nakagawa proposed a Gaussian Mixture
Model (GMM) based text-independent speaker identification
system that integrates pitch and the LPC residual with the
LPC-derived cepstral coefficients [2]. Their experimental re-
sults show that using pitch information is the most effective
when the correlation between pitch and the cepstral coeffi-
cients is taken into consideration. An automatic technique for
estimating and modeling the glottal flow derivative source
waveform of speech and applying the model parameters to
speaker identification was proposed in [3]. The complementary
nature of speaker-specific information in the residual phase
compared with the information in conventional MFCCs was
demonstrated in [4]. The residual phase was derived from
speech signals by linear prediction analysis. Zheng et al.
proposed a speaker verification system using complementary
acoustic features derived from vocal source excitation and the

vocal-tract system [5]. A new feature set, called the wavelet
octave coefficients of residues (WOCOR), was proposed to
capture the spectro-temporal source excitation characteristics
embedded in the linear predictive residual signal [5]. Recently,
many speaker recognition studies using group delay based
phase information have been proposed [7], [8]. Wang et
al. proposed phase-related features for speaker recognition
[9]. This type of phase information considers all frequency
ranges. We think that phase information is valid for speaker
identification, since it captures the features of the source wave.
Previously, we proposed a speaker identification system

using a combination of MFCCs and phase information [1],
[10], [11], directly extracted from the limited bandwidth of
the Fourier transform of the speech wave. We also showed that
the phase information is effective for speaker identification in
clean and noisy environments [1], [10], [11], [12]. However,
problems occurred in extracting the phase information because
of the influence of the windowing position. Therefore, we
propose a new method to extract pitch synchronous phase
information and skip frames with low power [15].
In this paper, we show that the pseudo pitch synchronous

phase information is also affective for noisy speech. The rest of
this paper is organized as follows. Section 2 presents the phase
information extraction method, while Section 3 discusses
combining the phase and MFCC methods. The experimental
setup and results are reported in Section 4, and Section 5
presents our conclusions.

II. PHASE INFORMATION EXTRACTION

A. Formulas [1], [12]

The spectrum S(ω, t) of a signal is obtained by DFT of an
input speech signal sequence

S(ω, t) = X(ω, t) + jY (ω, t)

=
√
X2(ω, t) + Y 2(ω, t)× ejθ(ω,t). (1)

However, the phase changes, depending on the clipping po-
sition of the input speech even at the same frequency ω. To
overcome this problem, the phase of a certain basis frequency
ω is kept constant, and the phases of other frequencies are
estimated relative to this. For example, by setting the basis



frequency ω to π/4, we obtain

S′(ω, t) =
√
X2(ω, t) + Y 2(ω, t)× ejθ(ω,t) × ej(

π
4 −θ(ω,t)), (2)

whereas for the other frequency ω′ = 2πf ′, the spectrum
becomes

S′(ω′, t)

=
√
X2(ω′, t) + Y 2(ω′, t)× ejθ(ω

′,t) × ej
ω′
ω (π

4 −θ(ω,t))

= X̃(ω′, t) + jỸ (ω′, t). (3)

In this way, the phase can be normalized. Then, the real and
imaginary parts of (3) become

X̃(ω′, t) =
√
X2(ω′, t) + Y 2(ω′, t)× cos{θ(ω′, t)

+
ω′

ω
(
π

4
− θ(ω, t))} (4)

Ỹ (ω′, t) =
√
X2(ω′, t) + Y 2(ω′, t)× sin{θ(ω′, t)

+
ω′

ω
(
π

4
− θ(ω, t))}, (5)

and the phase information is normalized as follows:

θ̃(ω′, t) = θ(ω′, t) +
ω′

ω
(
π

4
− θ(ω, t)) (6)

In the experiments described in this paper, the basis fre-
quency ω is set to 2π×1000Hz. In a previous study, to reduce
the number of feature parameters, we used phase information
in a sub-band frequency range only. However, a problem
arose with this method when comparing two phase values.
For example, for two values π − θ̃1 and θ̃2 = −π + θ̃1,
the difference is 2π − 2θ̃1. If θ̃1 ≈ 0, then the difference
≈ 2π, despite the two phases being very similar to each other.
Therefore, we modified the phase into coordinates on a unit
circle [12], that is,

θ̃ → {cos θ̃, sin θ̃}. (7)

B. Improvement of phase information extraction
Using the relative phase extraction method that normalizes

the phase variation by cutting positions, we can reduce the
phase variation. However, the normalization of phase variation
is still inadequate. For example, for a 1000 Hz periodic wave
(16 samples per cycle for a 16 kHz sampling frequency), if
one sample point shifts in the cutting position, the phase shifts
only 2π

16 , while for a 500 Hz periodic wave, the phase shifts
only 2π

32 with this single sample cutting shift. On the other
hand, if the 17 sample points shift, their phases will shift
by 17·2π

16 (mod2π) = 2π
16 and

34π
32 , respectively, for the two

periodic waves. Therefore, the values of the relative phase
information for different cutting positions are very different
from those of the original cutting position. We have addressed
such variations using a statistical distribution model of GMM
[1], [10], [12].
If we could split the utterance by each pitch cycle, changes

in the phase information would be further obviated. Thus,
we propose a new extraction method that synchronizes the
splitting section with a pseudo pitch cycle [15].
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Fig. 1. How to synchronize the splitting section.

With respect to how to unite the cutting sections in the
time domain, the proposed method looks for the maximum
amplitude at the center around the conventional target splitting
section of an utterance waveform, and the peak of the utterance
waveform in this range is adopted as the center of the next
window. This means that the center of the frame has maximum
amplitude in all frames. Fig. 1 outlines how to synchronize the
splitting section.

C. Cutting low power frames [12]

In noisy environments, speaker recognition performance is
degraded significantly. To address this problem, we cut 40% of
frames that have low power in the speech. This means we use
60% of frames in the speech. This method obtain the power
from all frames in the speech, and sort the value. Then, frames
lower 40% are unused. In the previous study[12], this method
was effective for improving speaker identification performance
using MFCC and the conventional pitch non-synchronized
phase information. We apply this method to only test data,
not to the training data.

III. COMBINATION METHOD AND DECISION METHOD

In this paper, the GMM based on MFCCs is combined with
the GMM based on phase information. When a combination of
the two methods is used to identify the speaker, the likelihood
of the MFCC-based GMM is linearly coupled with that of the
GMM based on phase information to produce a new score



Ln
comb given by

Ln
comb = (1−α)Ln

MFCC +αLn
phase, n = 1, 2, · · · , N, (8)

where Ln
MFCC and Ln

phase are the likelihoods produced by
the n-th MFCC-based speaker model and phase information
based speaker model, respectively. N is the number of speak-
ers registered and α denotes the weighting coefficients, which
are determined empirically. The speaker (or speaker model)
with maximum likelihood is judged to be the target speaker.

IV. EXPERIMENTS
A. Database and speech analysis
We used the JNAS (Japanese Newspaper Article Sentence)

database in the experiments [13]. The JNAS corpus consists of
the recordings of 270 speakers (135 males and 135 females).
To train the models, 10 clean sentences were used for all
speakers. About ninety other sentences were used as test data.
To obtain the noisy speech, we added stationary noise (in a
computer room) and non-stationary noise (in an exhibition
hall) from JEIDA Noise Database [14] to the test speech at the
average SN (Signal-to-Noise) ratios of 20 dB and 10 dB. In
total, the test corpus consisted of about 24,000 (90×270) trials
for each condition. The average duration of the sentences is
approximately 5.5 seconds.
The input speech was sampled at 16 kHz. A total of 25

dimensions (12 MFCCs, 12 ΔMFCCs and Δpower) were
calculated every 10 ms with a window length of 25 ms.
The spectrum with 128 components consisting of magnitude
and phase was calculated by DFT for every 256 samples.
Phase information was calculated every 5 ms with a window
length of 12.5 ms. For phase information, we used the first
12 phase components (24 feature parameters in total), that is,
from the first to the 12th component of the phase spectrum
(frequency range: 62.5 Hz - 750 Hz), which achieved the
best identification performance among all the other sub-band
frequency ranges [1]. These analysis conditions are shown in
Table I briefly.

TABLE I
Analysis conditions for MFCC and Phase information

MFCC Phase
Frame length 25ms 12.5ms
Frame shift 10ms 5ms
FFT size 512 samples 256 samples

(400 datas plus 112 zeros) (200 datas plus 56 zeros)
Dimensions 25 24

(12MFCCs, 12MFCCs, (sinθ and cosθ
and Δpower) of the first 12 components

of the phase spectrum)

B. Speaker identification results
We conducted a speaker identification experiment using

phase information on the JNAS database. GMMs with 128
mixtures were used as speaker models. The new phase ex-
traction method searches for the peak amplitude point in the
range ±0 ms, ±2.5 ms in the center of the next window.
The speaker identification results obtained from the individual

methods and the combination methods are shown in Table II
and Fig.2. “±0 ms” corresponds to the conventional extraction
method. For example, in the conventional method, recognition
rate is 68.6% for stationary noisy speech of 20 dB. On the
other hand, using the newly proposed extraction technique
(Phase ±2.5ms), the recognition rate is improved to 81.0%. On
average, comparing with the conventional phase information,
the speaker identification rate improved from 47.2% to 55.4%
(that is, an average error reduction rate is 15.5%). This means
that the window could catch the pitch accurately by searching
peaks in many frames, and more effective phase informations
were extracted even it was in the noisy environments.
The speaker identification results obtaind from the cutting

sections method are shown in Table III and Fig. 3. Comparing
with Table II, the recognition rates were improved in the
all conditions. The reason was that unreliable likelihood of
frames with low power was deleted. The proposed pseudo
pitch synhronized phase information outperformed than the
conventional phase information in almost all cases. However,
the proposed phase information was little worse (from 24.5%
to 23.4%) than the conventional phase information for non-
stationary noisy speech of 10 dB. The reason might be that
the positions of some sudden large noise were mistaken as
center of the window. It is interesting that MFCC is more
robust for non-stationary noise than stationary noise, but that
phase information is the opposite. Therefore, these features
are comprementary each other.

TABLE II
Speaker identification results in noisy environments using all frames in the
speech (“stat” means stationary noise in a computer room, “non-stat”
means non-stationary noise in a exhibision hall, decimals in ( ) are α in

equation (8))
noise condition

10 dB 20 dB average
stat / non-stat stat / non-stat

MFCC 20.2 / 18.2 36.4 / 52.4 31.8
Phase ±0ms 43.1 / 19.7 68.6 / 57.5 47.2
Phase ±2.5ms 56.2 / 17.0 81.0 / 67.4 55.4
combination 43.1 / 29.1 69.7 / 78.5 55.1

MFCC and Phase ±0ms (1.0) (0.7) (0.8) (0.6)
combination 56.2 / 27.1 81.0 / 82.1 61.6

MFCC and Phase ±2.5ms (1.0) (0.6) (1.0) (0.6)

TABLE III
Speaker identification results in noisy environments using 40% cut frames in

the speech
noise condition

10 dB 20 dB average
stat / non-stat stat / non-stat

MFCC 35.0 / 42.3 61.5 / 81.3 55.0
Phase ±0ms 52.4 / 24.5 76.4 / 67.7 55.3
Phase ±2.5ms 65.4 / 23.4 86.4 / 78.0 63.3
combination 60.3 / 53.1 87.9 / 92.1 73.4

MFCC and Phase ±0ms (0.6) (0.5) (0.7) (0.6)
combination 67.0 / 52.3 90.1 / 94.2 75.9

MFCC and Phase ±2.5ms (0.7) (0.4) (0.7) (0.5)

The speaker identification results obtained from the combi-
nation method are summarized in Fig. 4. For example, when
the MFCC-based method is compared with the combination



Fig. 2. Speaker identification results using MFCC and phase (use all frames
in the speech).

Fig. 3. Speaker identification results using MFCC and phase (cut 40% of
frames in the speech).

method for stationary noisy speech of 10 dB, the rate was
improved from 20.2% to 56.2% (a relative error reduction
of 45.1%) for the conventional phase extraction method, and
from 43.1% to 56.2% (a relative error reduction rate of 23.0%)
for the new phase extraction method using all frames in the
speech. On average, the rate was improved from 55.1% to
61.6% when using all frames of the speech (see the Table II).
Moreover, by cutting 40% of frames with low power in the
speech, the rate was improved to 75.9% on average (see the
Table III).
This result suggests that the proposed pseudo pitch synchro-

nized phase information extraction method is more effective
than the conventional extraction method in noisy conditions.

Fig. 4. Speaker identification results using combination of MFCC and phase.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, we verified the effectiveness of a pseudo-pitch

synchronous phase information for speaker identification in
noisy environments. Using the proposed method, on average,

the speaker recognition rate was improved from 47.2% using
the conventional phase information to 55.4% by individual
method. Moreover, the recognition rate using the MFCC was
improved remarkably when combined with the proposed phase
information (from 31.8% to 61.6%). And by cutting low power
sections in the speech, the rate was improved to 75.9%. These
results confirm that the proposed phase information is useful
for speaker identification in noisy environments.
But this method has weakness at large and non-stationary

noise conditions. In our preliminary experiment, the perfor-
mance of pseudo pitch synchronized phase information of
noisy speech using the estimated peak position of clean speech
(that is, an ideal condition) was better than that using the
estimated peak position of noisy speech. This means that one
of the weakness is the mistaking of estimation of the peak
position. In the proposed method, the center of the frame is
decided only depending on the peak amplitude of the signal.
We will try to find a robust method to detect the peak position
of voice wave. To find the true peak of voice wave, the moving
average method is very simple but might be useful because it
can reduce sudden peak of noise.
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