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Abstract—This paper addresses an over-smoothing effect in
Gaussian Mixture Model (GMM)-based Voice Conversion (VC).
The flexible use of the statistical approach is one of the major
reason why this approach is widely applied to the speech-
based systems. However, quality degradation by over-smoothed
speech parameter converted is unavoidable problem of statistical
modeling. One of common approaches to this over-smoothness
in conversion step is to compensate generated features, such as
Global Variance (GV), that explicitly express the over-smoothing
effect. In statistical Text-To-Speech (TTS) synthesis, we have
recently introduced a Modulation Spectrum (MS) which is
an extended form of GV, and have proposed MS-based Post-
Filter (MSPF) in Hidden Markov Model (HMM)-based TTS
synthesis. In this paper, we apply the MSPF to GMM-based
VC. Because the MS of speech parameters is degraded through
GMM-based conversion process, we perform the post-filter due
to MS modification of converted parameters. The experimental
evaluation yields the quality benefits by the proposed post-filter.

I. INTRODUCTION

Statistical Voice Conversion (VC) is an effective technique
for modifying speech parameters to convert non-linguistic
information while keeping linguistic information unchanged. It
have gained popularity due to its flexible application to speech-
based systems such as disability-aid [1], singing-voice synthe-
sis [2], speech-to-speech translation [3], and non-native speech
modification [4]. Gaussian Mixture Model (GMM)-based VC
is the state-of-the-art statistical approach. Trajectory-level con-
version from the source speaker to the target speaker is per-
formed through the GMMs that the relationship between these
speakers is jointly trained. One of the biggest issues in the
GMM-based VC is quality degradation of converted speech.
Because the accuracy to model fluctuating speech parameters
is insufficient, the over-smoothed speech parameters are gener-
ated in the conversion stage based on the Maximum Likelihood
(ML)-based criterion [5], and this over-smoothness causes the
degradation of speech quality and speaker individuality in the
converted speech.

Many attempts to address quality improvements are re-
ported. Post-filtering to the converted speech parameters is
common approach in conversion stage. We classify these
methods into two types: speech emphasis and parameter con-
version. The former, such as formant emphasis [6] and peak-
to-valley emphasis [7], emphasizes the converted parameters
based on the knowledge of speech perception. The latter, such
as Global Variance (GV)-based conversion [8] and event-based
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conversion [9], converts the specific features of the converted
parameter into natural one. What latter methods are automat-
ically trainable is a big advantages. T. Toda et al. integrated
GV into parameter generation process [5], which generates
speech parameters considering GV statistics. Although not
only the generation methods but also GV itself are widely
applied [10], the quality degradation are still large because the
over-smoothness are still remained. For quality improvements
in HMM-based TTS synthesis, we have introduced a new
feature called Modulation Spectrum (MS) [11], [12] which
is regarded as extended form of GV, and have proposed the
MS-based Post-Filter (MSPF) [13]. MSPF can achieve the
high-quality speech generation by modifying the MS of the
generated speech in HMM-based speech synthesis.

In this paper, we apply the MSPF to GMM-based VC.
Because the training and conversion stage in GMM-based VC
degrade the MS of speech parameters, we filter the generated
parameters to close its MS to natural one in the conversion
stage. The MSPF can generate the naturally-fluctuated tempo-
ral parameter sequence. The result of perceptual assessment
demonstrate the quality gain by the proposed method.

II. CONVERSION ALGORITHM IN GAUSSIAN MIXTURE
MODEL-BASED VOICE CONVERSION [5]

In training stage, a joint probability density of speech
parameters of the source and target speaker’s voice is modeled
with a GMM using a parallel data set as follows:

M
P(X, YN =) amN (Bﬂ ;uiif’Y%E;i"”), )

m=1

T 1T T 71T
where X; = [z/,Az]] and Y, = [y, Ay/] are
joint static and dynamic feature vectors of the source and
target speakers, respectively. @; = [x: (1), , x4 (D)]T and
y, = [y (1), ,y: (D)]" are D-dimensional static feature
vectors of source and target speakers at frame ¢, respectively.
N (+;u, %) denotes the Gaussian distribution with a mean
vector 1 and a covariance matrix 3. The total number of
mixture components is M. A is a GMM parameter sets
consisting of the mixture-component weight a,,, the mean
vector ,Af ) and the covariance matrix ng’y) of the m-
th mixture component. Also, we estimate statistics of target
speaker’s GV v (y) that is the 2nd moment of parameter
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trajectory y = [le, e ,y}]T, which is defined as:
’U(y) = [U(l),"'7U(d)7~--,U(D)}T, (2)
1 & 1 « ’
v(d) = =) (yt(d)—TZyT(cD) NE)
t=1 =1

where T is the number of frames.
In conversion stage, the parameter sequence of source
. T. _
speaker’s voice & = [a:lT, L@ ] is converted to maximize

both GMM likelihood and GV likelihood:
§ = argmax P (Wy|Wz, ) P (v (y) |A,)", 4)
y

where A\, is GV parameter sets, W is a weight matrix to
calculate dynamic feature vector sequence [14], w is a weight
of GV likelihood. In this paper, we approximate GMM with
a single mixture component [5]. Scaling in temporal domain
is compensated by considering GV statistics. However, speech
quality and speaker individuality of the converted speech ex-
cessively degrades because the converted parameter trajectory
is still temporally over-smoothed.

III. MODULATION SPECTRUM (MS) AND MS-BASED
POST-FILTER (MSPF) FOR GMM-BASED VC

A. Modulation Spectrum (MS)

The MS s (y) is defined as log-scaled power spectrum of
the temporal sequence y, which is calculated as

sw) = [s7 . s@ L s0)] L ®
(@ = [sa0),salf) s, ©

where sq(f) is the f-th MS of the d-th dimension of the
parameter sequence [y; (d),--- ,yr (d)], f is a modulation
frequency index, D is one half number of the DFT length.
In this paper, the MS is calculated from an utterance that is
zero-padded to set its length to 2D;. As illustrated in Figure
1 consisting of MSs of the natural and converted mel-ceptral
coefficient parameter sequences, the training and conversion
processes deteriorate the MS of speech parameters'. Moreover,
we have found more excessive degradation in the higher
quefrency and higher modulation frequency component.

B. MS-based Post-Filtering (MSPF)

The post-filter is trained using the training data including
natural and converted speech of the target speaker’s voice.

1) Training: The following probability distribution function
is estimated from natural speech parameter trajectory:

P (s (y) ) =N (s(): ™, 50), ™

where N <‘; u(N), E(N)> is a Gaussian distribution of a mean

T

vector pN) = [,u%), e ,u%\%é} and a diagonal covari-
2 2

ance matrix ¥V = diag [(0%)) AR (JS\T)DS) }, M&Nf)

TAs we have reported in [13], MSs of the converted speech are recovered
by compensating GV
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Fig. 1. Averaged modulation spectra of 1st, Sth, and 9th mel-cepstral coeffi-
cient sequences from above.

2
and (agc)) is a mean and a variance of s4(f) and A

is a parameter set of MS. Probability distribution function
N(-;M(G),E(G)) is estimated in the same manner using
the speech parameter trajectory generated with the generation
method described in Section II.

2) Conversion: The following filter is applied to the con-
verted speech parameter sequence y:

sa(f) = (1—Fk)sa(f)
)
+ k| (sa (D —nl]) +ead| . ®
d.f

where k is a post-filter emphasis coefficient valued between
0 and 1. The MS of the converted speech become nearly
in natural MS as increasing k. The finally filtered parameter
trajectory is calculated from the filtered MS and frequency
phase characteristics of the parameter trajectory, which are
calculated before filtering.

As we have illustrated in Figure 1, higher modulation
frequency components in the converted MS are degraded.
Therefore, the MSPF runs like adaptive high-pass filter applied
to temporal parameter sequence, and the filtered temporal
parameters include natural fluctuation.

1V. EXPERIMENTAL EVALUATIONS
A. Experimental Conditions

In our experiments, we prepared two Japanese speakers of
male and female. We selected 50 parallel sentences of subset A
from phonetically balanced 503 sentences included in the ATR
Japanese speech database [15] for training, and 50 sentences
of subset B for evaluation. We trained male-to-female and
female-to-male GMMs. Speech signals were sampled at 16
kHz. The shift length was set to 5 ms. The 1th-through-24th
mel-cepstral coefficients were used as spectral parameters and
log-scaled Fpy and 5 band-aperiodicity [16], [17] were used as
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Fig. 2. GMM likelihood for the filtered spectral parameters.

excitation parameters. The STRAIGHT analysis-synthesis sys-
tem [18] is employed for parameter extraction and waveform
generation. The spectral parameters and aperiodic components
is converted through a 64-mixture GMM and a 16-mixture
GMM, respectively. The log-scaled Fjy is linearly converted.
The DFT length to calculate MS is set to 2048, which is over
the maximum frame length in training and evaluation data. The
MSPF is applied to only spectral parameters. We didn’t apply
both parameter generation considering GV and the MSPF to
the aperiodic components because these methods do not cause
any large improvement in the aperiodic component.

We conducted objective and subjective evaluations with two
systems: 1) “Conv”: parameter trajectory converted consid-
ering GV described in Section II, and 2) “MSPF”: filtered
parameter trajectory by MSPF. In all evaluations, "M” and
”F” indicate target male speaker and target female speaker,
respectively.

B. Objective Evaluation for Tuning Emphasis Coefficient

In order to determine the filter emphasis coefficient, we cal-
culate the GMM likelihood, GV likelihood, and MS likelihood
for filtered parameter trajectory of the evaluation data under
settings the emphasis coefficient from 0 to 1. For compari-
son, the likelihood for natural speech parameter sequence is
calculated, which is labeled as “natural.”’

The GMM likelihood, GV likelihood, and MS likelihood are
shown in Figure 2, Figure 3, and Figure 4, respectively. Note
that “MSPF” at setting coefficient to 0.0 is equal to “Conv.” It
is observed that the GMM likelihood of “MSPF” decreases as
the coefficient increases, and the MS likelihood of “MSPF”
increase as the coefficient increases, and it is the closest to
“natural” when coefficient is 1.0. We can also see that the
magnitude correlation between “MSPF” and “natural” never
change in all settings in GMM likelihood and MS likelihood.
On the other hand, the transition of GV likelihood shows
different tendency between two speakers. We find that the GV
likelihood of “MSPF” is the closest to that of “natural” when
the coefficients are 0.90 for male speaker and 0.70 for female
speaker. From these results, we determined the filter emphasis
coefficients to 0.90 and 0.70, respectively.
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Fig. 3. GV likelihood for the filtered spectral parameters.
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Fig. 4. MS likelihood for the filtered spectral parameters.

C. Subjective Evaluation on Speech Quality and Speaker
Individuality

To investigate the effect of the MSPF on speech quality
and speaker individuality, we first conducted a preference
test (AB test) on speech quality. We presented every pair of
converted speech of two systems in random order. Similarity,
we conducted XAB test on speaker individuality. We first pre-
sented an analysis-synthesized reference speech as ”X”, then
we presented random-ordered converted speech. We forced
listeners to prefer speech sample. 7 listeners are prepared in
each assessment.

The results of the preference tests on speech quality and
speaker individuality are shown at left side and right side
of Figure 5, respectively. Moreover, an example of the spec-
trograms is shown in Figure 6. More fluctuated spectrogram
by the MSPF is observed in Figure 6. In term of speech
quality, meaningful quality gain is observed in both speaker.
Here, we could the effectiveness of MSPF on speech quality
in both statistical TTS [13] and VC. However, unfortunately,
there is no significant different in preference test on speaker
individuality. We expect that no cues for individuality are at
higher modulation frequency which is recovered by the MSPF.

V. SUMMARY

In this paper, we applied the modulation spectrum-based
post-filter to the GMM-based voice conversion. The post-
filter filters parameter trajectory converted through maximum
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Fig. 6. An example of spectrograms representing “Conv,” “MSPF,” and
“natural” from left.

likelihood estimation using Gaussian mixture models. We
evaluated the post-filter on both speech quality and speaker in-
dividuality. The experimental results yielded the effectiveness
of the post-filter in term of speech quality. As future work,
we will incorporate the modulation spectrum to the parameter
generation algorithm.
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