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Abstract—In this paper, we propose a feature-based approach
to address the challenging task of recognising overlapping sound
events from single channel audio. Our approach is based on our
previous work on Local Spectrogram Features (LSFs), where
we combined a local spectral representation of the spectrogram
with the Generalised Hough Transform (GHT) voting system for
recognition. Here we propose to take the output from the GHT
and use it as a feature for classification, and demonstrate that
such an approach can improve upon the previous knowledge-
based scoring system. Experiments are carried out on a chal-
lenging set of five overlapping sound events, with the addition of
non-stationary background noise and volume change. The results
show that the proposed system can achieve a detection rate of
99% and 91% in clean and 0dB noise conditions respectively,
which is a strong improvement over our previous work.

I. INTRODUCTION

The topic of Sound Event Recognition (SER) covers the
detection and classification of sound events in unstructured
environments, which may contain multiple overlapping sound
sources and non-stationary background noise. Many sounds
contribute to the understanding and context of the surrounding
environment, and therefore should not be regarded simply as
noise, as is common in automatic speech recognition (ASR).
Instead, such sounds are useful in many applications, such as
security surveillance [1], bioacoustic monitoring [2], meeting
room transcription [3], and ultimately “machine hearing” [4].

In this paper, we address the problem of recognising over-
lapping sound events by utilising the visual information in
the time-frequency spectrogram representation of the audio
signal. The spectrogram has historically been used to analyse
the phonetic structure of speech using a technique known as
“spectrogram reading” [5], where a person is able to pick out
the important spectral structures and use these to recognise
the underlying speech. Despite this, visual-based techniques
for automatic classification of speech have not been heavily
researched, in part due to the complicated lexical structure.
Sound events, on the other hand are typically more sparse
and distinct, making the visual information more tractable for
automatic classification.

Previous work on recognition of overlapping sounds can
be separated into several distinct methodologies. The first
are multi-microphone techniques, which use one or more
microphone arrays combined with detection and beamforming
to isolate specific sounds from the overlapping mixture [6].
However here we focus specifically on the task of recognising
overlapping sounds in single channel audio. The second is

blind source separation, where factorisation is commonly used
to decompose the input signal into its constituent sources.
For example, [7] use unsupervised non-negative matrix fac-
torisation (NMF) to process the input audio into four compo-
nent streams, where different sound events may be separated
into different streams for recognition. The recogniser is then
applied to all four streams to find occurrences of the 61
trained sound classes. The final group of methods are based
on feature-based classification. One approach developed for
ASR is Factorial HMMs (FHMMs) [8], based on the MixMax
model of source interaction [9], where the best combination
of hidden states is found among the trained models to explain
the observed feature. However, the combinatorial nature of the
problem results in extremely high computational complexity,
which limits the number of simultaneous sources that can
be recognised. A more recent approach uses hierarchical
SVM [3], where the first SVM classifies the input as either
isolated events or a combined “overlapped” class, which is
then expanded in a second SVM to identify the overlapped
combination. This requires sufficient training samples of the
overlapped sounds in advance, covering each possible degree
of overlap, which may not be available in advance.

Our feature-based system extends our previous work [10]
combining local spectrogram feature extraction with the Gen-
eralised Hough Transform (GHT) [11] for recognition [12].
The idea is to first extract local features surrounding interest-
points in the spectrogram. These features, and their time-
frequency locations, are then used to create a model which
is used for recognising each sound class. The GHT is used as
a scoring mechanism, which maps consistent interpretations
of each sound model into local maxima in the Hough space,
enabling us to detect multiple overlapping sound events in
a single clip. The key in this work is to use the output of
the GHT as a feature that can be used to train a classifier to
map the output of the GHT to a probability that the segment
contains the target sound class. In particular, we use the
random forest classifier for this purpose, which is able to avoid
overfitting the sparse training data.

The paper is organised as follows. Section II first introduces
the idea behind our GHT approach. Section III then details
the approach used to map the GHT output into a recognition
probability. Section IV describes our experiments and the
results obtained. Finally, Section V concludes this work.
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II. GENERALISED HOUGH TRANSFORM SYSTEM FOR
OVERLAPPING SOUND EVENT RECOGNITION

The approach presented in this paper takes inspiration from
works in the field of object detection from image processing
[12], where finding objects in a cluttered real-world scene can
be seen as having many parallels with that of overlapping
SER. The central idea is to characterise a spectrogram by a
set of independent local features, where each feature represents
a glimpse [13] of the local spectral information. The GHT
is then a summation of the local evidence provided by each
local feature, based on a model that learns the distribution
of the observed features in the spectrogram for each class
during training. Since the GHT voting is additive, a sound
can still be recognised even when a proportion of features is
missing or corrupted due to noise or overlapping sounds. The
representation of each sound in the Hough accumulator space
is also sparse and separable, such that overlapping sounds
occurring at the same time will produce distinct spikes in
the separate accumulators for each class so that both can be
detected.

Figure 1 details the steps required for training and testing.
It also highlights the contribution in this paper in the shaded
boxes, whereby the output of the GHT is treated as a feature
and used for training a random forest classifier to map the
GHT output into a recognition probability. The three main
steps are now summarised in this section, while the details of
the proposed scoring system are given in Section III.

A. Local Spectrogram Feature Extraction

We first detect “keypoints” in the spectrogram to locate
characteristic spectral peaks and ridges. Keypoints are then
detected at locations that are local maxima across either
frequency or time, subject to a local signal-to-noise ratio
(SNR) criterion to remove the majority of those occurring on
the background noise. For each keypoint, we extract an LSF
and local missing feature mask to represent the local spectral
region. We use a plus-shaped LSF, composed of the local
horizontal and vertical spectral shapes in the spectrogram, as
this was found to be more suitable than including the full
two-dimensional region which may become dominated by non-
stationary noise or overlapping sounds.

B. Training

The extracted LSFs are first clustered to generate a code-
book, where each entry in the codebook represents charac-
teristic local patterns found in the training samples. After
codebook matching, the LSF detected in the spectrogram can
considered to be replaced by the matching codebook entry.
Each sound event is then modelled through the occurrence
distribution of the matched codebook clusters in the training
spectrograms, over time and frequency. Note that we do not
model the distribution over spectral power as in [10] as
the proposed scoring method was found to be sufficiently
discriminative. The sound onset is used as a reference point
for the temporal information to overcome the problem of time-
shifting, while the frequency dimension is considered to be
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Fig. 1. Overview of the proposed LSF enhanced scoring system, which uses
a random forest classifier to map the GHT score to a probability.

fixed. Previously, we would then extract scoring parameters
for verification during testing, however here we propose an
alternative approach by training a random forest classifier
to perform the mapping between the GHT output and the
probability, as introduced in the next section.

C. Recognition

The LSFs are first matched onto the codebook, with the
best matching codebook selected. We then generate sound
onset hypotheses using the Generalised Hough Transform
(GHT) [11], which is a voting system that sums the matching
keypoint-cluster distribution information in a separate Hough
accumulator space for each class. The idea is that all keypoints
belonging to the same sound event in the spectrogram will
share a common onset, and their time-frequency distribution
relative to the onset should match that modelled in the training.
Therefore the occurrence distribution model, learned during
training, is used as the voting function for the GHT. Here we
propose to use the output of the GHT as a feature, and the
score from the random forest classifier is used as a metric for
accepting the hypothesis.



III. PROPOSED PROBABILITY MAPPING AND DETECTION
SYSTEM

In this section, we introduce our proposed method for
mapping the output of the GHT into a metric that is suit-
able for accepting or rejecting each individual sound event
hypothesis. We first discuss the drawbacks of the previous
knowledge-based approach, before introducing our proposed
classification-based approach.

A. Previous Knowledge-based Scoring Approach
The previous approach in [10] was to extract scoring pa-

rameters, which were then used as a threshold for hypothesis
verification during testing. The first scoring parameter was
the voting count of the cluster, to represent the average log-
spectral power assigned to each cluster. This should capture
how important a particular cluster is for classification of a
given class, such that if the cluster is missing the hypothesis
will be assigned a lower weight. The second scoring parameter
was the cluster score, to represent the relative weight that
the cluster contributes to the sound class. Since the cluster
score was normalised to sum to unity for each sound class, a
threshold could be set for accepting a hypothesis to provides
a trade-off between false rejection and acceptance.

The drawback of this approach is that several manually
defined thresholds and factors were required to determine
whether the clusters could be considered matched in the
spectrogram. The optimum thresholds may vary significantly
between datasets, hence a more automated approach should
improve the generalisation capability of the system.

B. Proposed Random Forest Mapping
Here we propose to take the output of the GHT as a

feature for classification, and use the random forest classifier
to provide the mapping between GHT output and hypothesis
probability score. We can denote the output of the GHT as
follows:

ght output = HX(k, t) (1)

where H represents the Hough accumulator, k = 1 . . .K is the
cluster index, t is the current time frame, and X is the given
sound class. For each time frame, this is a vector of length K,
containing the summation of the cluster distribution voting
functions in the GHT. Note that in all of our experiments, we
use K = 200.

A separate random forest classifier is trained for each class
X , using the GHT output for the given class HX(k, t) as the
input feature. The classification is performed frame-wise, and
the training labels are generated by finding the frame with the
maximum GHT voting score over the training clip. This frame
represents the onset of the sound and is assigned a positive
class label, along with the 4 adjacent frames. As the training
data is sparse, additional training examples are generated by
randomly setting 50% of the feature to half of their original
value. This is repeated five times, and was found to improve
the generalisation ability of the classifier to unseen examples.
The output is a probability, and we were able to set a threshold
at Ω = 0.1, as the random forest produced few false positives.
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Fig. 2. Example of two sounds overlapping in 0dB Factory Floor noise (above)
and the output GHT voting score (below). The detection hypotheses for the
two sounds can clearly be seen, and the GHT cluster scores surrounding these
points are input to the random forest classifier for verification. The verification
score for each detection is shown in brackets.

IV. EXPERIMENTS

Database: For our experiments, we generate a database
of overlapping sound events from the Real Word Computing
Partnership (RWCP) Sound Scene Database [14]. We select
the following five classes: horn, bells5, bottle1, phone4 and
whistle1. Amongst the sounds, the bottle1 class contains the
most variation, with five different bottles being struck by two
different objects, although there is some variation across all
classes. From this, we generate all 15 overlapping combi-
nations, each consisting of one or two sound events, using
randomly chosen onset times ensuring between 50 − 100%
temporal overlap.

Baseline: The first baseline we call MixMax-GMM, which
can be seen as a simplification of the FHMM approach [8]
using one state, as in [10]. We model the PDF using a
6-component GMM, and take the maximum log-likelihood
summed across all frames in the clip as the classification
result. The second baseline we call Overlap-SVM, which is
based on the approach proposed by [3]. Note that Overlap-
SVM also requires 20 samples for each of the 10 overlapping
combinations, which we generate from the isolated samples
selected for training. Here, the mean and variance of the 60-
dimension frame-based features is taken over the clip, giving
a final feature with 120 dimensions. Finally, the performance
of our previous LSF-based approach from [10] is compared.

Experimental Methods: For training, we randomly select



TABLE I
EXPERIMENTAL RESULTS ACROSS THE VARIOUS TESTING CONDITIONS. THE VALUES FOR TP/FA (% ± STD) ARE REPORTED OVER 5 RUNS OF THE

EXPERIMENTS. RESULTS HIGHLIGHTED IN BOLD INDICATE THE BEST PERFORMANCE FOR EACH CONDITION.

Experiment Setup
Proposed LSF-RF LSF Overlap-SVM MixMax-GMM

TP FA TP FA TP FA TP FA
Isolateda

Clean 99.9± 2.7 0.4± 2.4 99.3± 2.7 0.4± 2.4 100± 0.0 1.5± 3.4 99.6± 1.4 1.3± 5.8
Overlappingb 98.9± 3.5 0.3± 1.1 98.0± 3.4 0.8± 3.6 96.5± 7.3 1.3± 2.8 84.0± 29.3 5.2± 17.0

Overlappingb

+ added noise

20dB 98.5± 5.0 0.5± 2.2 97.2± 5.0 0.7± 3.2 76.9± 39.0 18.6± 35.1 52.8± 44.9 27.8± 42.6
10dB 96.9± 7.9 0.7± 2.6 95.5± 9.1 0.9± 3.5 74.7± 40.9 20.9± 36.8 37.8± 42.9 25.1± 41.2
0dB 91.0± 14.5 0.8± 2.8 90.2± 17.6 2.5± 8.2 65.7± 41.9 25.8± 36.1 22.9± 38.8 20.9± 35.7

Overlappingb

+ volume change

×0.5 98.9± 3.7 0.1± 0.6 98.1± 3.0 0.7± 3.3 84.0± 24.8 1.5± 5.0 56.0± 43.4 12.4± 27.8
×0.75 99.2± 3.1 0.1± 0.6 98.4± 2.9 0.5± 1.8 92.8± 13.1 1.1± 2.9 80.6± 30.0 4.4± 13.7
×1.5 99.3± 3.0 0.2± 0.7 98.4± 2.7 0.6± 2.1 95.9± 9.9 4.0± 11.4 82.0± 29.8 8.3± 21.6
×2 99.4± 3.0 0.2± 0.9 98.0± 3.3 0.7± 2.0 94.1± 14.7 7.0± 18.3 68.7± 40.7 23.7± 39.3

Average 98.0% 0.4% 97.0% 0.9% 86.7% 9.1% 64.9% 14.3%
a Results are averaged over the 5 isolated sound classes
b Results are averaged over the 15 overlap combinations

20 clean isolated samples of each sound event from the
database. For testing, we generate 50 overlapping samples
for each of the 15 overlapping combinations, using samples
excluded from the training set. We then investigate the per-
formance under mismatched noise and volume conditions.
In particular, we add “Factory Floor 1” noise, from the
NOISEX’92 database [15], to the testing samples at 20, 10
and 0 dB SNR. This noise is chosen for its challenging,
non-stationary nature. We also change the volume by pre-
multiplying the waveform by the factors {0.5, 0.75, 1, 1.5, 2}
prior to taking the STFT of the signal, to simulate a channel
transfer function. As evaluation measure, we calculate the
recognition accuracy (TP) and false alarm (FA) over each
of the sound classes, over 5 runs of the experiment. TP is
calculated as the ratio of correct detections to the number of
clips containing occurrences of that class. Analogously, FA is
the ratio of incorrect detections to the number of clips not
containing that class.

Results: The results show that the proposed LSF-RF hy-
pothesis verification approach performs significantly better
than the original knowledge-based approach. The system can
now achieve close to 99% TP in clean conditions across the
15 overlapping conditions, and 91% in 0dB noise. The FA is
also reduced and is maintained below 1% for all experiments.

An example in Figure 2 shows the challenging conditions
present for the overlapping recognition system in 0dB condi-
tions. The GHT voting is able to identify the onset of two
sound events in the mixture, while the random forest scoring
system is able to convert the GHT output to a probability.

V. CONCLUSION

In this paper, we propose a method for the simultaneous
recognition of overlapping audio events. Our approach is based
on local spectrogram features and the Generalised Hough
Transform (GHT), but treats the output of the GHT as a
feature for classification using a random forest classifier, which
maps the GHT output into a probability for recognition. The
experiments show an improvement over the previous approach,
and demonstrate the simplicity of the random forest mapping
compared to a knowledge-based approach.
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[9] A. Nádas, D. Nahamoo, and M. A. Picheny, “Speech recognition using
noise-adaptive prototypes,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 37, no. 10, pp. 1495–1503, 1989.

[10] J. Dennis, H. D. Tran, and E. S. Chng, “Overlapping sound event
recognition using local spectrogram features and the generalised Hough
transform,” Pattern Recognition Letters, vol. 34, no. 9, pp. 1085–1093,
Jul. 2013.

[11] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern recognition, vol. 13, no. 2, pp. 111–122, 1981.

[12] A. Lehmann, B. Leibe, and L. Van Gool, “Fast prism: Branch and bound
hough transform for object class detection,” International journal of
computer vision, vol. 94, no. 2, pp. 175–197, 2011.

[13] M. Cooke, “A glimpsing model of speech perception in noise,” The
Journal of the Acoustical Society of America, vol. 119, no. 3, pp. 1562–
1573, 2006.

[14] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, “Acous-
tical sound database in real environments for sound scene understanding
and hands-free speech recognition,” in Proceedings of the International
Conference on Language Resources and Evaluation, vol. 2, 2000, pp.
965–968.

[15] A. Varga and H. J. M. Steeneken, “Assessment for automatic speech
recognition: II. NOISEX-92: A database and an experiment to study
the effect of additive noise on speech recognition systems,” Speech
Communication, vol. 12, no. 3, pp. 247–251, 1993.




