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Abstract—In this study, a secondary sound source localizer
for robot applications is developed. The purpose of using the
secondary sound localizer is to assist the camera and hand
manipulation of disaster-response robots. A key requirement
for this application is the compactness of the input device. In
this study, a single-point 13-mm diameter stereo microphone
mountable on the robot hand is employed, and its observation
model is developed. The localizer must be usable while the hand
scans to collect visual information. This is realized by the conver-
sion of the parameter scan in conventional parametric modeling
to the mechanical scan of the hand. Another requirement is
robustness against the ego noise of the robot. Two localization
methods for a single-point stereo microphone that have noise-
whitening functions are proposed. Experimental results show that
the proposed method achieves a performance comparable to that
achieved by the conventional time delay estimation approach but
with a much more compact configuration.

I. INTRODUCTION

Sound source localization is an important function in robot
applications and has been intensively researched for many
years. In previous studies, such as [1], [2], [3], the main
purpose of the sound localizer was as a human interface
with which the locations of multiple human speakers could
be estimated. For this purpose, the sound source localizer
typically employs the frequency-domain approach with a large
microphone array consisting of many microphones (e.g., 8
microphones) that are mounted on the head of the robot. In this
study, the systems that require a large array aperture (including
two-channel systems with a large inter-microphone spacing,
e.g., [4]) are termed the primary sound localizers.

In recent years, the use of a mobile robot in disaster areas
such as devastated nuclear plants has been attracting growing
attention [5]. As described in detail in Section II-A, one of the
important tasks for robots in this application is to investigate
the damages to the facilities and repair them. For this purpose,
the information from cameras has been typically used. On the
other hand, damages that result in leakage of gases and liquids
are often accompanied by the emission of sound. Therefore,
the use of sound source localization techniques together with
the camera is expected to be effective. As the damaged section
is often located in narrow places or behind obstacles, the
camera mounted on the hand of the robot is typically used
for this task [6]. Thus, it is desired that the sound localizer
is also mounted on the hand of the robot. A small localizer
mountable on the robot hand is termed the secondary sound
localizer, and is the topic of this study.

The requirements for this secondary localizer include the
following:

• Compactness: As a secondary localizer, the input device
must be sufficiently compact so that it is mountable on
the hand of the robot.

• Scannability: As the localizer is assumed to be used
while the hand scans over the region of interest to collect
visual information with the camera, the localizer must be
usable during the scanning.

• Robustness: The sound source localizer mounted on
the robot often suffers from the ego noise of the robot.
Therefore, the localizer must be robust against this noise.

Considering the compactness requirement, this study em-
ploys a small tie-clip type single-point stereo microphone.
In this stereo microphone with a diameter of 13 mm, two
directional microphone elements that have cardioid directivity
patterns rotated to the left and right are embedded. As regards
scannability, scanning of a single-point stereo microphone is
realized by converting the parametric scan in the conventional
parametric modeling approach into a mechanical scan of the
robot hand based on the observation model for a single-point
stereo microphone. To ensure robustness, the noise whitening
technique is used to eliminate the effect of the ego noise of
the robot.

II. PROBLEM STATEMENT

A. Scenario

In this subsection, the problem addressed in this study is
outlined. One of the important tasks for the robot utilized in
disaster areas is to find damaged sections in the facilities and
repair them.

As a strategy to find sound sources in the area of interest,
the following two-stage sound source localization method is
considered. In a large space such as a building or a warehouse,
a primary sound source localizer can be used to estimate the
location of sound sources. For the humanoid robot HRP-2 that
is under consideration in this study, we developed an 8-element
microphone array with an array aperture of approximately 20
cm mounted on the head of the robot [7]. Once the locations
of the sound sources are estimated, the robot selects one of
the sound sources as a target source to be investigated, and
moves to the vicinity of the target sound source. This process
is termed the first stage localization in this study.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 76 APSIPA ASC 2015



Fig. 1. An example of the tasks for a humanoid robot used in devastated
areas. The configuration of the camera mounted on the palm (annotated by
”Camera”) is shown in Fig. 2. In this figure, microphones are not installed.

Fig. 2. The camera configuration on the palm of the humanoid robot HRP-2.
In this figure, microphones are not installed.

In the second localization stage, the robot investigates the
selected target sound source in more detail. Fig. 1 shows an
example of the investigation of a damaged section currently
conducted with a camera. As depicted in Fig. 2, the robot has
a small camera on the palm to investigate the damaged section
closely and assist the hand manipulation for repair. When the
damaged section is in a narrow place such as those between the
pipelines or behind obstacles as depicted in Fig. 1, the sound
may reach to the microphone array mounted on the head with
diffraction, and therefore the precise localization cannot be
expected by using only the primary sound source localizer.
Thus, a secondary sound localizer using a small input device
that can be mounted on the robot hand is desired. If the sound
localizer can be mounted on the hand, the sound information
corresponding to the visual information from the camera is
available while the hand scans, and therefore the efficiency of
investigation is expected to become higher.

13 mm

Fig. 3. The single-point stereo microphone AT-9901 used in this study.

B. Input device

As an input device for the secondary sound source localizer
mountable on the hand of the robot, a single-point stereo
microphone, the Audio-technica AT-9901, is used in this study
and is shown in Fig. 3. Fig. 4 shows the position of AT-9901
tentatively attached to the edge of the robot palm in this study.
Unlike a pair of microphones with a large spacing utilized in
the conventional time difference of arrival (TDOA) estimation,
two small directional microphone elements are embedded in
the microphone’s body with a diameter of φ =13 mm. The
time difference τ12 between the stereo outputs is less than the
propagation time through the microphone’s body as

τ12 <
φ

c
= 38.2 [µs]

where c is the velocity of sound. Note that the stereophonic
effect based on the inter-channel time difference cannot be
expected in the single-point stereo microphone.

To obtain the stereophonic effect, the two microphone
elements in AT-9901 have cardioid directivity patterns rotated
to the left and right as shown in Fig. 5. As the detailed
data of AT-9901 is not available, this figure is used as the
schematic for explaining the function of the single-point stereo
microphone. These cardioid directivities yield gain difference
between the stereo output that depends on the incident angle of
sound. Fig. 6 shows the measured inter-channel gain difference
as a function of the incident angle. In this study, the gain
difference that depends on the incident angle is utilized for
localizing sound sources.

C. Scanning

In the conventional sound source localization method, a
parametric modeling approach is often used. In this approach,
an observation model that includes the parameter of interest,
such as the angle of the sound sources, is built. In the
estimation process, the parameters in the model are scanned
(varied) over the range of interest so that the model is fitted
to the actual observation to find the optimal values of the
parameters, while the location of the microphone array is
fixed. This scan is called “parameter scan” in this study for
the sake of convenience. In the frequency-domain approach,
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AT-9901

Robot’s
body

Camera

Fig. 4. Configuration of the single-point stereo microphone on the robot hand.

Fig. 5. Schematic diagram of the cardioid directivity of the single-point stereo
microphone.

the steering vector (e.g. [8]) in the model is scanned over the
possible incident angles.

In this study, by taking advantage of the mobility of the
robot hand, the direction of the stereo microphone is scanned
over the range of interest by rotating the hand around the
wrist joint, while the parameter in the model is fixed. This is
termed the “mechanical scan” in this study. It will be shown
later in Sections IV and V that parameter scan can be easily
converted to mechanical scan. The angle of the source can be
estimated by obtaining the value of rotary encoder at the wrist
joint when the fitness measure such as the likelihood of the
model becomes maximum.

D. Characteristics of the ego noise

In this subsection, the characteristics of the ego noise of the
robot are discussed.

Fig. 7 shows the configuration of the microphone. As can be
seen from this figure, the hand is located in the vicinity of the
body. Thus, the ego noise of the robot that mainly consists of
the noise of the servo-motor emitted from the body is observed
at the microphone position.

Fig. 8 (a) and (b) shows the short-time power of the
observed signal at the right and left channel of the microphone
during the scan of the hand. The range of the scan was

Fig. 6. Inter-channel gain difference of the single-point stereo microphone.

[+60◦,−60◦], and the duration of the scan was 15 s. For
calculating the short-time signal power, the observation was
sectioned into time blocks with a duration 0.5 s and an overlap
of 0.25 s, and the averaged power in each block was calculated.
In Fig. 8(a) and (b), the target source does not exist, and thus
the observation mainly consists of the ego noise of the robot.
The solid curve shows the average of the five trials. From this
figure, the inter-channel level difference of approximately 7
dB is observed in a large part of the scan. This difference is
attributed to the fact that the noise source (the body of the
robot) is within the range of the left cardioid pattern shown in
Fig. 5. Thus, it can be seen that the ego noise is directional.
Moreover, the noise level is a function of the hand angle and
becomes maximum when the hand is in the frontal direction
for both channels. The reason for this observation is that when
the hand is in the frontal direction, the robot’s center of mass
shifts forward and the servo motor functions intensively to
maintain balance, causing the noise power level to become
large. In the figure, the standard deviation for the five trials
is also shown by the dotted line. It can be seen that the
variance of the measurements is small, and thus the curve
is reproducible.

Fig. 8 (c) and (d) shows the case when the target sound
source exists. As a target source, a loudspeaker (Yamaha
MS101-III) was placed at 0◦ (frontal direction of the robot)
as depicted in Fig. 7. The distance of the target source from
the center of the wrist joint was 1.5 m.

Fig. 9 shows the power spectrum of the observations for
the case with the target signal (blue curve) and that without
the target signal (red curve) at the time block when the robot
hand was in the frontal direction. It can be seen that the noise
mainly consists of low-frequency components, and thus the
SNR in the frequency lower than around 800 Hz is low.

Based on these observations, the properties of the ego noise
of the robot in this study can be summarized as follows:

• The noise is emitted from the body of the robot, and is
directional.

• The SNR is low especially at the left channel.
• The noise level is a function of the robot hand angle.
• The curve of the noise level is reproducible, and thus can

be measured in advance.
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θ = +60 θ = −60

Wrist joint

θ = 0

AT-9901

Robot body
Robot arm

Ego-noise

Target signal

Fig. 7. Configuration of the robot, microphone, and target sound source.

Fig. 8. Short-time power of the microphone observation. (a) and (b): Target
source is switched off; (c) and (d): The target source is switched on. (a) and
(c): Left channel; (b) and (d): Right channel.

• The noise mainly consists of low-frequency components.
As the ego noise of the robot is unavoidable in this application,
the sound localization method developed needs to be robust
against the ego noise.

III. OBSERVATION MODEL

In this section, the observation model for the estimation
of source angle is discussed. For the sake of simplicity in
notation, a static environment in which no hand scanning
is conducted is assumed in Section III-A - Section III-B.

Fig. 9. Spectra of the observation for the left (a) and right (b) microphones.
Red line: Target source is switched off (Noise); Blue line: The target source
is switched on (Target signal + Noise).

In Section III-C, the time block-based estimation that is
necessary for a dynamic environment involving hand scanning
is introduced.

A. Gain difference model

In general, the observation at the microphone pair is mod-
eled using the convolution as

zt =

[
z1(t)
z2(t)

]
=

[
h1(t) ∗ s(t) + v1(t)
h2(t) ∗ s(t) + v2(t)

]
(1)

where zm(t) denotes the observation at the mth microphone
and the tth discrete time index. s(t) is the source signal, and
hm(t) denotes the impulse response from the sound source to
the mth microphone. The symbol ‘∗’ denotes the convolution
operator.

As described in Section II-B, the inter-channel time differ-
ence of the single-point stereo microphone AT-9901 is less
than the sampling interval Ts = 62.5 µs corresponding to the
sampling frequency fs = 16 kHz employed in this study. On
the other hand, it has the gain difference that is dependent on
the incident angle θ as shown in Fig. 6. Therefore, (1) can be
reduced to the following gain difference model:

zt =

[
b1(θ)s(t) + v1(t)
b2(θ)s(t) + v2(t)

]
= b(θ)s(t) + vt (2)

where b(θ) = [b1(θ), b2(θ)]T and vt = [v1(t), v2(t)]T . The
symbol ·T denotes the vector/matrix transpose. The common
time delay is omitted. The vector b(θ) represents the inter-
channel gain difference

G12(θ) :=
b2(θ)

b1(θ)
(3)

that is dependent on the direction θ as shown in Fig. 6, and is
termed the gain vector hereafter. This gain difference model
was previously used in the blind separation of the acoustic
sources together with the vertically-stacked two directional
microphones to reduce the convolutive mixture to the instan-
taneous mixture [9], [10].
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In the actual microphone device, the precision of the model
(2) is degraded to some extent for θ ̸= 0◦ because the cardioid
pattern shown in Fig. 5 differs at different frequencies. This
causes some frequency distortion of the signal. As described
in Section II-C and later in Section IV-C, the gain vector for
the frontal direction b(θ = 0◦) alone is used in the estimation
by introducing the mechanical scan. Therefore, the effect of
the signal distortion on sound source localization is considered
to be small.

B. Noise whitening
From the property of the noise given in Section II-D, the

noise vt is spatially colored in the problem addressed in this
study. In this subsection, a basic concept of how the effect of
the colored noise is eliminated in the proposed sound source
localizer is described.

Assuming that the signal s(t) and the noise vt are uncorre-
lated, the covariance matrix of the observation can be modeled
using (2) as

R := E[ztz
T
t ] = γb(θ)bT (θ) +Q (4)

where γ = E[|s(t)|2] and Q = E[vtvT
t ]. The symbol E[·]

denotes the expectation operator. 　 In this subsection and
Section V, the signal s(t) is modeled as a random variable
(random signal model [11], see the discussion in Section
IV-A.)

In the conventional parametric modeling approach, the noise
vt is often assumed to be spatially white. By this assumption,
the noise covariance matrix becomes a diagonal matrix, i.e.,
Q = σ2

vI , where σ2
v represents the variance of the noise.

This makes the derivation of the estimator much easier. In the
case when the actual noise is not spatially white, the mismatch
between the noise model and the actual noise causes estimation
error [12].

A method to avoid this mismatch is the noise whitening.
The whitening of vt is defined as [13]:

ṽt := Wvt (5)

where W is the whitening matrix that satisfies

W TW = Q−1 (6)

Though the matrix W is not uniquely determined, a typical
choice is W = Σ−1/2V T where Σ and V are the eigenvalue
matrix and the eigenvector matrix of Q, respectively. By
applying the whitening to the observation, i.e., z̃t = Wzt,
and taking its covariance matrix, we have

R̃ := E
[
z̃tz̃

T
t

]
= γWb(θ)bT (θ)W T + I (7)

Here we use the following relation obtained from (6).

WQW T = I (8)

By comparing (7) and (4), it can be seen that the noise
covariance Q is reduced to the identity matrix.

Instead of using the noise-whitened observation z̃t explicitly
as employed in [4], the noise-whitening process is embedded
in the proposed method as described in Section IV-B and
Section V-B.

Fig. 10. Joint angle as a function of time.

C. Time block-based estimation

To estimate the source angle with the mechanical scan, time
block-based estimation, typically employed in the estimation
for dynamic systems, such as the tracking of moving targets
[14], is introduced. The observation is sectioned into a time
block with a block length of T samples, then the fitting
measure between the model and the observation is evaluated
in each time block. For time block-based estimation, the
observation model (2) is expressed as

zk,t =

[
b1(θk)s(k, t) + v1(k, t)
b2(θk)s(k, t) + v2(k, t)

]
= b(θk)s(k, t) + vk,t

(9)
where zm(k, t) denotes the microphone input at the mth
channel, the kth time block, and the tth sample in the block.

In the same way as in the estimation for dynamic systems,
it is assumed that the signal and noise are stationary and the
location of the sound source θk is constant within a block. By
assuming this, the methods developed for static cases can be
applied in each time block. In this study, the robot hand scans
in the range of [−60◦,+60◦] to avoid contact with the body
(see Fig. 7 for the configuration). The scanning speed and the
block length T are determined on the basis of our previous
studies on the tracking of moving human speakers using the
primary sound localizer [15], [16]. The total scanning time
for the range of [+60◦,−60◦] was 15 s. Fig. 10 shows the
value of the joint angle obtained from the rotary encoder as
a function of time during the scan. The block length is 0.5 s
(T=8000 samples in 16-kHz sampling) with a block overlap
of 0.25 s.

IV. MAXIMUM LIKELIHOOD METHOD

In this section, the maximum likelihood estimator based
on the observation model (9) is developed. For the sake of
simplicity, the “parameter scan” employed in the conventional
parametric modeling approach is used in the derivation of
the algorithm in Section IV-A and Section IV-B. The derived
estimator is then converted to the “mechanical scan” in Section
IV-C.
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A. Estimator

In the observation model (9), there are three parameters,
i.e., the angle of the sound source θk, the source signal s(k, t),
and the noise vector vk,t. Hereafter, the signal is denoted as
sk,t for the sake of simplicity in notation. In this study, θk
is the parameter to be estimated. Regarding the noise vk,t,
its covariance Qk = E[vk,tvT

k,t] is assumed to be known in
advance. Regarding the source sk,t, the deterministic signal
model and the random signal model can be selected [11]. The
difference between the two models is that in the deterministic
model, sk,t is treated as a fixed but unknown parameter; in
the random signal model, sk,t is treated as a random variable
and the covariance model (4) is utilized in the fitting. The
deterministic model, which is more complex in computation
and derivation, is typically used for the estimation of the
source signal. In this study, the estimation of the source sk,t
is not required. Nevertheless, for the easiness in deriving the
noise whitening in the ML approach described in Section IV-B,
the deterministic signal model is selected in Section IV.

The likelihood for the signal parameters {θk, sk,t} in the kth
time block based on the deterministic signal model is given
by

L(θk, sk,t) = p(zk,t; θk, sk,t) (10)

∝ exp
[
− (zk,t − b(θk)sk,t)

T Q−1
k (zk,t − b(θk)sk,t)

]

The noise vk,t in the kth block is assumed to have a Gaussian
distribution N (0,Qk). Expanding the likelihood (11) to that
for the block data Zk = [zk,1, · · · , zk,T ] yields

L(θk,Sk) =
T∏

t=1

p(zk,t; θk, sk,t) (11)

∝ exp

[
−

T∑

t=1

(zk,t − b(θk)sk,t)
TQ−1

k (zk,t − b(θk)sk,t)

]

where Sk = [sk,1, · · · , sk,T ]. The observations
{zk,1, · · · , zk,T } are assumed to be mutually statistically
independent. From the likelihood equation ∂L/∂sk,t = 0,
the signal estimate is obtained as an intermediate estimate as
follows:

ŝk,t =
b(θk)TQ

−1
k

bT (θk)Q
−1
k b(θk)

zk,t (12)

By substituting (12) into (11) and taking the logarithm, the
log likelihood is written as

LL(θk) ∝ −
T∑

t=1

(Gkzk,t)
TQ−1

k (Gkzk,t)

= −tr

(
Q−1

k

T∑

t=1

(Gkzk,t)(Gkzk,t)
T

)

= −tr
(
Q−1

k Ck

)
(13)

where

Gk := I − b(θk)b
T (θk)Q

−1
k

bT (θk)Q
−1
k b(θk)

(14)

Ck := GkR̄kG
T
k (15)

R̄k :=
T∑

t=1

zk,tz
T
k,t (16)

The matrix R̄k is termed the sample covariance matrix (divi-
sion by T is omitted.) Using the derived likelihood, the source
angle can be estimated as

θ̂k = argmaxLL(θk) (17)

B. Noise whitening
In this subsection, the means by which the effect of the

noise vk,t is removed in the ML approach is described.
By substituting (9) into (11), and assuming that the esti-

mates of the parameters, {θ̂k, ŝk,t}, are given, the value of the
log likelihood is written as

LL(θ̂k, Ŝk) ∝ −
T∑

t=1

eTk,tQ
−1
k ek,t − tr

(
Q−1

k Q̄k

)
+ Ω (18)

where

ek,t := b(θk)sk,t − b(θ̂k)ŝk,t (19)

Q̄k :=
T∑

t=1

vk,tv
T
k,t (20)

Ω := −tr

[
Q−1

k

T∑

t=1

(ek,tv
T
k,t + vk,te

T
k,t)

]
(21)

{θk, sk,t} denotes the true value of the parameters and the
symbol ek,t denotes the estimation error. When T → ∞,
1
T Q̄k → Qk, and the second term (divided by T ) in (18)
becomes

tr

(
Q−1

k

1

T
Q̄k

)
→ dim(Qk) = 2 (22)

From this, it can be seen that the dependency on vk,t is
removed from the second term. By assuming that ek,t and vk,t

are uncorrelated, Ω → 0. Thus, the vk,t-related term in (18)
becomes constant, and the estimation error ek,t is minimized
by maximizing the log likelihood. The second term in (18)
can be rewritten as

−tr

(
T∑

t=1

vT
k,tQ

−1
k vk,t

)
= −tr

(
T∑

t=1

(Wvk,t)
T (Wvk,t)

)

(23)
where the matrix W that satisfies W TW = Q−1

k is the
whitening matrix defined in (6). Thus, it can be seen that the
noise-whitening effect described in Section III-B is embedded
in the ML approach.

In the actual estimation, (22) approximately holds as T
is finite. The mismatch between Qk and 1

T Q̄k may yield
imperfectness in the noise whitening, resulting in deterioration
of the localization performance.
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C. Conversion to the mechanical scan

The log likelihood for the parameter scan (13) - (16) can
be rewritten as

LL(θ(p)k ) ∝ −tr
(
Q−1

k Ck(θ
(p)
k )
)

(24)

Gk(θ
(p)
k ) = I −

b(θ(p)k )bT (θ(p)k )Q−1
k

bT (θ(p)k )Q−1
k b(θ(p)k )

(25)

Ck(θ
(p)
k ) = Gk(θ

(p)
k )R̄kG

T
k (θ

(p)
k ) (26)

R̄k =
T∑

t=1

zk,tz
T
k,t (27)

where the parameter θ(p)k to be scanned in the observation
model is emphasized.

In the mechanical scan, by rotating the robot hand, an
arbitrary angle θ in the world coordinate system is converted
to that in the robot-hand coordinate system by

θ̃ = θ − θ(h)k (28)

where θ(h)k is the angle of the robot hand in the world
coordinate. The parameter θ̃(p)k in the observation model is
fixed at θ̃(p)k = 0◦. The corresponding gain vector is denoted
as

b0 := b(θ̃(p)k = 0◦) (29)

On the other hand, the covariance matrix becomes the function
of the rotation angle θ(h)k as R̄k → R̄k(θ

(h)
k ) and Qk →

Qk(θ
(h)
k ). By using these, the equations for the parameter scan

(24) - (27) are converted to:

LL(θ(h)k ) ∝ −tr
(
Q−1

k (θ(h)k )Ck(θ
(h)
k )
)

(30)

Gk(θ
(h)
k ) = I −

b0b
T
0 Q

−1
k (θ(h)k )

bT0 Q
−1
k (θ(h)k )b0

(31)

Ck(θ
(h)
k ) = Gk(θ

(h)
k )R̄k(θ

(h)
k )GT

k (θ
(h)
k ) (32)

R̄k(θ
(h)
k ) =

T∑

t=1

zk,t(θ
(h)
k )zT

k,t(θ
(h)
k ) (33)

The source angle is then estimated as:

θ̂ = argmax
θ(h)
k

LL(θ(h)k ) (34)

When the direction of the hand θ(h)k matches the source
angle, the sound wave arrivess from the frontal direction of
the single-point stereo microphone, and the gain vector b0 in
the model also matches the true gain vector in the observation
zk,t, resulting in maximizing the likelihood function.

V. SUBSPACE-BASED METHOD

In this section, the method for estimating the spacial spec-
trum based on the subspace approach is developed. In the same
manner as that in Section IV, the algorithm is derived using
the “parameter scan” in Section V-A and Section V-B, and is
then converted to the “mechanical scan” in Section V-C .

A. Estimator

In Section V, the random signal model is employed for the
derivation (see the discussion in Section IV-A.) The covariance
model (4) is extended to the time block-based estimation as:

Rk := E[zk,tz
T
k,t] = γkb(θk)b

T (θk) +Qk (35)

In (35), rank
(
γkb(θk)b

T (θk)
)
= 1, as this term consists of a

single vector b(θk). This is termed the one-rank model of the
signal, and the vector b(θk) spans the one-dimesional subspace
termed the signal subspace [17], [8]. The orthogonal comple-
ment of the signal subspace is termed the noise subspace. Let
us denote the signal subspace and the noise subspace as ΨS

and ΨN , respectively. The dimension of the noise subspace is
also one as the dimension of the entire vector space is two,
i.e., dim(zk,t) = 2. Let us denote the basis vector of the noise
subspace as d. As b(θ) ∈ ΨS , d ∈ ΨN , and (ΨS)⊥ = ΨN ,
the two vectors b(θ) and d are orthogonal, i.e.,

bT (θk)d = 0 (36)

Based on the orthogonality given by (36), the spatial spec-
trum defined as

P (θ(p)k ) :=
bT (θ(p)k )b(θ(p)k )

|bT (θ(p)k )d|2
(37)

is employed in this study. θ(p)k is an arbitrary direction for
the parameter scanning. When θ(p)k = θk where θk is the true
direction of the sound source, the denominator in (37) becomes
zero because of (36), resulting in P (θ(p)k ) having a peak in the
true sound source direction. Therefore, the source angle can
be estimated as

θ̂k = argmax
θ(p)
k

P (θ(p)k ) (38)

The method of obtaining the vector d is described in Section
V-B.

A similar spectrum estimator was employed in the
well-known MUSIC (multiple signal classification) [18] or
Minimum-norm [19] estimator. The difference between the
proposed method and the conventional subspace-based spatial
estimator is the observation model. The proposed method is
based on the time-domain gain difference model shown in (9),
whereas the conventional estimator is based on the frequency-
domain observation model.

B. Noise whitening

In this section, the vector d that satisfies (36) is derived by
using the GEVD approach. During the derivation, it is shown
that the process of GEVD has the noise whitening function
[18], [20].

The generalized eigenvalue problem for the subspace ap-
proach is given by

Rke = λQke (39)
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where λ and e denote the eigenvalue and eigenvector, respec-
tively. The eigenvectors that satisfy (39) jointly diagonalize
the covariance matrices as

ETRkE = Λ (40)
ETQkE = I (41)

where Λ = diag(λ1,λ2) and E = [e1, e2] are the eigenvalue
matrix and eigenvector matrix, respectively [21]. The eigen-
values and the corresponding eigenvectors are assumed to be
sorted in a descending order with respect to the eigenvalues.
Comparing (41) with (8), it can be seen that ET is the
whitening matrix for the noise vk,t. Thus, the GEVD approach
has the noise whitening function that eliminates the effect of
noise in the estimator (37).

The generalized eigenvalue problem given by (39) is equiv-
alent to the following standard eigenvalue problem [21]:

(
WRkW

T
)
f = λf (42)

where
f = W−Te (43)

By substituting (35) into (42),
(
W γkbb

TW T + I
)
f = λf (44)

Here, b(θ(p)k ) is denoted as b for the sake of simplicity. As
the rank of γkbb

T is one, the rank of W γkbb
TW T is also

one; thus, the smaller eigenvalue of W γkbb
TW T is zero.

Let us denote the non-zero eigenvalue of W γkbb
TW T by

µ. When the identity matrix I is added to W γkbb
TW T , the

eigenvectors do not change while the eigenvalues are added
by one. Thus the eigenvalues {λi} become

λi =

{
µ+ 1 i = 1
1 i = 2

(45)

By multiplying the second eigenvector fT
2 corresponding to

λ2(= 1) from the left hand side of (44), and using (45),

fT
2 W γkbb

TW Tf2 = 0 (46)

By substituting (43) into (46),

γk|bTe2|2 = 0 (47)

Assuming γk ̸= 0,
bTe2 = 0 (48)

From (48), it can be seen that the vector e2 has the orthogonal
property shown in (36). Thus, the eigenvector e2 can be used
as d.

C. Conversion to the mechanical scan
In the same manner as Section IV-C, the spatial spectrum

estimator for the subspace method (37) can be converted to
that for the mechanical scan as

P (θ(h)k ) :=
bT0 b0

|bT0 e2(θ
(h)
k )|2

(49)

where e2(θ
(h)
k ) is the eigenvector for the smaller eigenvalue

in the following GEVD problem:

Rk(θ
(h)
k )e = λQk(θ

(h)
k )e (50)

VI. EXPERIMENT

A. Conditions

The experiment was conducted in a large experiment room
for robots with a reverberation time (RT60) of approximately
0.3 s. A single sound source (loudspeaker, Yamaha MS101-III)
was located on a circle of radius 1.5 m as depicted in Fig. 7.
White Gaussian noise was emitted from this source as a target
signal sk,t so that the frequency characteristics of the source
signal does not affect the estimation performance. Another
reason for this choice is that the white noise is considered to
have characteristics similar to that of gas leakage sounds from
pipelines. The right wrist joint of the robot, which is the center
of the rotation of the right hand, was placed at the center of
the circle. The direction of the sound source was selected from
{+40◦,+20◦, 0◦}. The conditions for the hand scanning are
described in Section III-C

The ego noise of the robot was measured before the exper-
iment was performed. Five trials were recorded and used to
obtain the averaged noise covariance as

Q̄k =
1

5

5∑

i=1

T∑

t=1

vi,k,tv
T
i,k,t

where i is the index for the trial. Regarding the gain vector b0,
the vector b0 = [b1(θ = 0), b2(θ = 0)]T measured in Section
II-B was used.

For the experiment including the target sound source, five
trials were recorded for each location of the sound source. As
shown in Fig. 9, the ego noise is dominant below 800 Hz.
Therefore, the following two cases: (a) the observation using
the entire frequency range (denoted as“low SNR”), and (b)
the observation processed by a high-pass filter with a cutoff
frequency of 800 Hz (denoted as “high SNR”), were tested to
compare the cases of different SNRs.

B. Results of the ML method

Fig. 11 shows the variation of likelihood as a function of
time (lower axis) and joint angle (upper axis). The sound
source was located at 20◦ as indicated by the vertical dotted
line. For the noise covariance matrix, the previously measured
covariance matrix Q̄k, and the covariance matrix correspond-
ing to the spatially white noise I , were tested for the sake of
comparison. For the high SNR case, the likelihood was at a
maximum in the direction close to the true location in either
case when Q̄k or I was employed (Fig. 11(a)-(b) ). For the low
SNR case with the noise covariance matrix I , the peak of the
likelihood was greatly shifted (Fig. 11(c)). When the measured
noise covariance matrix Q̄k was employed, the maximum
remained in the vicinity of the source location (Fig. 11(d)),
though the peak was somewhat vague compared with the high
SNR case.
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Fig. 11. Log likelihood of the ML-based method for the case of the true
source angle θ = 20◦. (a) and (b): High SNR; (c) and (d): Low SNR. (a)
and (c): White Noise Model; (b) and (d): Measured noise model.

Table I shows the mean value and the standard deviation of
the estimated angles for the five trials. For the high-SNR data,
both the bias error (the difference between “Mean” and “True”
angle) and the random error (standard deviation denoted as
“SD”) are small. For the low-SNR data, the results are strongly
affected by the presence of the noise when the spatially white
noise covariance matrix I was employed. When the measured
noise covariance matrix Q̄k was employed, the estimation
accuracy was recovered to some extent. Nevertheless, both the
bias error and the random error were larger than those for the
high-SNR data.

TABLE I
MEAN AND STANDARD DEVIATION (SD) OF THE ESTIMATED ANGLE FOR

THE ML METHOD.

High SNR Low SNR
True White Measured White Measured

angle Mean SD Mean SD Mean SD Mean SD
0 6.1 3.0 –0.7 1.5 –58.8 8.7 9.0 14.1

20 20.6 1.8 26.0 1.5 –59.1 7.6 16.3 9.8
40 36.6 1.8 37.8 2.4 –59.0 9.5 34.6 18.5

C. Results of the subspace method
Fig. 12 shows the spatial spectrum given by (49) for the

subspace method. Compared with those using the ML method,
the peak is much sharper. This is because a null is formed in
the denominator of (49) when b0 in the model matches that

Fig. 12. Spatial spectrum of the subspace-based method for the case of the
true source angle θ = 20◦. (a) and (b): High SNR; (c) and (d): Low SNR.
(a) and (c): White Noise Model; (b) and (d): Measured noise model.

in the observation. For the low-SNR data, in the same way as
that with the ML method, a poor result was obtained when the
spatially white noise covariance matrix I was employed. When
the measured noise covariance matrix Q̄k was employed,
the estimation performance was completely recovered. These
results show that noise whitening is essential for the problem
addressed in this study. From the results for the low-SNR data
shown in Table II, the effect of noise whitening was confirmed.

TABLE II
MEAN AND STANDARD DEVIATION (SD) OF THE ESTIMATED ANGLE FOR

THE SUBSPACE METHOD.

High SNR Low SNR
True White Measured White Measured

angle Mean SD Mean SD Mean SD Mean SD
0 6.8 1.5 3.8 0.0 –57.9 7.7 –2.2 2.9

20 44.9 27.0 18.5 0.0 –58.8 8.6 18.5 2.4
40 47.2 1.5 37.2 1.5 –60.0 0.0 39.4 1.8

D. Comparison with the TDOA approach

In this subsection, the results of the proposed methods are
compared with those of the conventional TDOA approach.
For the TDOA approach, a pair of monaural omnidirectional
microphones (Sony ECM-C115) that were placed on both
sides of the robot hand with spacing d = 12 cm was used.
As an estimator, the CSP method [22] was employed.
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Table III shows the mean value and the standard deviation
of the estimated angles for the TDOA approach. For both the
high- and low-SNR data, some bias error with a small SD
value, such as 0.0, was observed. This is attributed to the
quantization effect in TDOA approach. The estimation preci-
sion of the TDOA approach is considered to be comparable to
the proposed method for the currently discussed microphone
configuration.

TABLE III
MEAN AND STANDARD DEVIATION (SD) OF THE ESTIMATED ANGLE FOR

THE TDOA METHOD.

True High SNR Low SNR
angle Mean SD Mean SD

0 -4.3 0.0 -4.3 0.0
20 16.4 0.0 16.4 0.0
40 30.4 5.2 30.4 5.2

VII. CONCLUSION AND DISCUSSION

In this study, a secondary sound source localizer for a
humanoid robot that is assumed to be used in disaster areas
was proposed. A requirement for this application is the com-
pactness of the input device to ensure that it is mountable on
the hand of the robot. The proposed method employs a single-
point stereo microphone with a diameter of 13 mm as an input
device, which can be easily mounted on the hand of the robot.
The observation model for this microphone was developed and
the source angle estimators based on this model were derived.

Furthermore, the secondary sound source localizer must be
usable while the robot hand scans over the region of interest
to collect visual information with the camera. This is accom-
plished by converting the parameter scan in the conventional
parametric modeling approach into the mechanical scan of the
hand based on the mathematical equivalence of the observation
model between the parameter scan and the mechanical scan.

Another important issue involves the reduction of the effect
of the robot ego noise. In the current application, the noise
level is a function of the hand angle and is independently
observable. Based on this noise characteristic, two methods,
i.e., the ML-based method and the subspace-based method that
incorporate a noise whitening function were proposed.

The results of the experiment show that the subspace method
exhibited a higher spatial resolution compared to the ML
method. This is attributed to the fact that the subspace method
is a null-based approach as was described in Section V. As
regards the noise whitening, the ML method is more robust
against the modeling error of the noise covariance matrix
compared to the subspace method. This is attributed to the
fact that the subspace method is dependent on the one-rank
model of the signal. The comparison with the conventional
TDOA approach shows that the proposed method achieves
a performance comparable to that achieved by the TDOA
approach but with a much more compact configuration.
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