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Abstract— Classical DNA sequence compression algorithms 

consider only intra-sequence similarity, i.e., similar subsequences 

within the DNA sequence are found and encoded together.  In 

this work, in addition to the intra-sequence similarity, we exploit 

the inter-sequence similarities in that similar subsequences are 

found within the DNA sequence as well as from other reference 

sequences.  Hence, highly similar sequences from the same 

population or partially similar chromosome sequences of the 

same species can be compressed together to reduce the storage 

space.  Experimental results show that the proposed scheme 

achieves good compressibility for both partially similar 

chromosome sequences and highly similar population sequences. 

I. INTRODUCTION 

The growth of public databases storing DNA sequences has 

been stimulated by advancement of technologies and the 

usefulness of DNA in areas such as forensics applications in 

recently years [1]. In order to reduce the storage space and 

lessen the transmission load, effective compression 

algorithms are needed to compress these sequences.  

Traditional DNA compression algorithms found similar 

subsequences within the DNA sequence which are then 

encoded together.  Examples include BioCompress [2], 

GenCompress [3], DNACompress [4] and DNAPack [5].  

While these algorithms employ different strategies to exploit 

the intra-sequence similarity, the average bit per base (bpb) 

can only be reduced from 2 to 1.73 for benchmark DNA 

sequences [4].   

Studying the DNA sequences stored in public databases 

revealed that similarities can be found among a number of 

DNA sequences. For example, the chromosome sequences of 

one species are partially similar to each other; similar 

subsequences can be found between two different 

chromosome sequences [6, 7]. Besides, DNA sequences from 

different individuals of the same species/population are highly 

similar to each other [8].  Hence, great saving in bpb can be 

achieved if a sequence is encoded with respect to another 

sequence.  The work in [8] encoded the base-to-base 

differences between two DNA sequences while that in [9] 

used a suffix array to store similar subsequences which was 

followed by differential coding of the suffix array data.  

Classical Lempel-Ziv compression has also been modified to 

improve the compression performance in RLZ-opt [10], GDC 

[11] and FRESCO [12]. These algorithms [8–12] are very 

effective in compressing the highly similar population 

sequences.  Despite that, their strategies would not be 

effective in characterizing the partially similar chromosome 

sequences.  The objective of this study is to develop a 

compression scheme that exploits intra-sequence and inter-

sequence similarities and provides effective solution to both 

highly similar and partially similar DNA sequences. 

II. BACKGROUND 

Classical DNA sequence compression algorithms [2-5] find 

similar subsequences within the DNA sequence to be 

compressed and then encoded them together.  The similar 

subsequences can be in the form of exact or approximate 

repeats and reverse complementary repeats [2-4, 13].  The 

two subsequences in the approximate repeats have similar 

composition of bases but with some mismatches in certain 

positions.  The mistmatches are characterized through base 

substitution, deletion or insertion.  The reverse 

complementary repeats refer to the matching of the two 

subsequences by first replacing bases with their 

complementary bases and then matching in the reverse order 

[6]. 

In addition to intra-sequence similarity, inter-sequence 

similarity can always be found between two DNA sequences.   

Consider the population sequences of human mitochondria.  

Out of the 3615 sequences, the average number of bases that 

deviate from the revised Cambridge reference sequence 

(GenBank accession number: AC_000021) is only 33.8 base 

pairs [8].  As compared to the sequence length of 16K, the 

base composition has an average similarity over 99.7%.  

Therefore, algorithms such as [8-12] that consider the inter-

sequence similarity are very effective and have very high 

compression ratio. 

In addition to the highly similar population sequences, 

studies have found that similarities also exist among different 

chromosome sequences of the same species [7].  For example, 

the 16 chromosome sequences of the yeast S. cerevisiae 

contain both intra-sequence and inter-sequence similarities.  

In chromosome sequence I, the ratio of intra-sequence 

similarity and inter-sequence similarity is about 1:10.  As 

inter-sequence similarities are significant, incorporating these 

similarities in DNA sequence compression can certainly 

improve the compression ratio.  However, it should be noted 
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that only certain parts of the two chromosome sequences are 

similar to each other.  Strategies such as base-to-base 

difference or differential coding would not be effective to 

handle this type of similarity.  A more general scheme to 

exploit the partial similarity is needed. 

III. PROPOSED COMPRESSION SCHEME 

A compression scheme that considers both intra-sequence 

and inter-sequence similarities is proposed.  In the proposed 

scheme, instead of characterizing the base-to-base difference, 

similar subsequences within two DNA sequences are found 

and encoded together.  Hence, both highly similar and 

partially similar sequences can be encoded effectively.  Fig. 1 

shows the encoding and the decoding processes of the 

proposed compression scheme. 

 

 

 

In the encoding phase, similar subsequences are found 

between the sequence to be compressed (called the target 

sequence) and the reference sequence.  The reference 

sequence can be the target sequence or other similar sequence 

to be compressed together.  Sequence alignment algorithms 

[14] are used to find the similar subsequences pairs.  In this 

paper, PatternHunter [15] is used for searching similar 

subsequences in two sequences because of its efficiency.  Fig. 

2 shows an example of the similar subsequence pair in which 

an approximate repeat is identified.  The two subsequences 

have similar base composition but with some mismatches.  

Three lists are generated to represent the required operation 

for matching the two subsequences.  They are: 

 the operation list: it contains the type of operation in 

matching the corresponding bases in the two 

subsequences.  The type of operation can be base 

substitution (S), insertion (I) or deletion (D). 

 the offset list: it marks the relative positions at where the 

bases are different in the two subsequences. 

 the base list: it contains the replaced base for the 

substitution operation and the inserted base for the 

insertion operation. 

For the approximate subsequence in Fig. 2, the first 

unmatched base is at the 3rd position relative to the beginning 

of the subsequence in the target sequence.  It can be described 

through insertion.  Hence the operation list is I, the offset list 

is 3 and the base list is A.  The second unmatched base can be 

described by substitution at the 5th position relative to the 

previous operation.  Thus the operation list, the offset list and 

the base list become IS, 35 and AA respectively. 

 

 

 

 

After identifying all the similar subsequences in the 

sequences, it is possible that subsequences of the target 

sequence in two different pairs overlap partially with each 

other.  To solve this problem, our idea is to keep a long 

subsequence with fewer modifications rather a short 

subsequence with many modifications.  Hence the 

overlapping parts are kept in the pair which incurs fewer 

modifications while the corresponding parts in another pair 

are removed.  After solving the overlapping problem, the 

similar subsequences are removed from the target sequence.  

This subsequence will be combined with the three lists to 

form a single compressed bitstream.   

The first part of the compressed bitstream is the 

concatenated operation lists.  An additional symbol is added 

as a delimiter to separate the lists from different subsequence 

pairs.  Arithmetic coding [16] is then used to compress the 

concatenated operation lists.  A first-order character-based 

model is adopted in probability calculation for the arithmetic 

coding.  The second part of the compressed bitstream contains 

the concatenated offset lists.  There is no delimiter introduced 

in the offset list since the subsequence boundaries can be 

deduced from the operation lists.  The offset values are 

encoded primarily using Elias gamma code [8, 17].  However, 

for long consecutive offset values, run-length coding is used.  

The third part of the compressed bitstream is the base lists of 

all repeats.  Arithmetic coding is used for its compression.  

The final part of the compressed bitstream contains the 
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Fig. 1   An overview of the proposed compression scheme in the (a) 

encoding and (b) decoding processes. 
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Fig. 2   An example of the similar subsequence pair.  The matched 

bases are connected by vertical lines while the unmatched bases are 
marked using rectangular boxes.  The number above individual bases 

shows the offset position. 
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encoded similar subsequence pairs.  The decoding process is 

the reverse of the encoding process.  However, there is no 

need to find the similar subsequence pairs.  The target 

subsequence can simply be reconstructed by decoding the 

subsequence pairs and the three lists for mismatches in the 

pairs.  The decoding time is thus much less than the encoding 

time. 

IV. EXPERIMENTAL RESULTS 

Experiments have been conducted to evaluate the 

performance of the proposed compression scheme.  The first 

dataset is composed of 3615 Homo sapiens mitochondrial 

sequences.  These sequences have small variations across 

human population. The second dataset consists of the sixteen 

chromosome sequences of S. cerevisiae.  All the sequences 

are available in GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/). These chromosome 

sequences are found to be partially similar to each other. 

A. Compression of a Homo Sapiens Sequence with 

Reference to the Revised Cambridge Reference Sequence 

Our proposed scheme is applied to compress the 3615 

Home sapiens mitochondrial sequences with an average 

length of 16k.  The revised Cambridge reference sequence 

with GenBank accession number of AC_000021 is used as the 

reference sequence in the compression as it is a good 

representative of all the sequences.  Table I summarizes the 

similarity information of these 3615 sequences with the 

revised Cambridge reference sequence.  The percentage of the 

similar subsequences has an average of 99.996%.  The 

average number of modifications per base is only 0.0021 bpb.  

Hence, it is highly effective for using the base-to-base 

difference coding for this set of sequences. Table II compares 

the bpb of our proposed algorithms with several existing 

compression approaches. Our proposed algorithm achieves a 

bpb of 0.0389 which is lower than those of algorithms 

RLCSA [9], RLZ-opt [10], GDC [11] and FRESCO [12] 

which ranges from 0.0395 to 0.1873. The bpb of our proposed 

algorithm is still comparable to the best bpb attained by the 

algorithm from Brandon et al. [8], 0.0314.  If one considers 

only intra-sequence similarity, the bpb from GenCompress [3] 

is 1.9436 which is much higher than the other algorithms that 

consider inter-sequence similarity.  Hence inter-sequence 

similarity should be considered in compressing population 

sequences. 

 

 

 

 

 

 

B. Compression of a Chromosome Sequence with Reference 

to Another Sequence 

A chromosome sequence of S. cerevisiae is compressed by 

considering its similarity with another reference chromosome 

sequence.  As evidence in Table III, this set of 16 

chromosome sequences is very difficult to compress as the 

average bpb for considering only intra-sequence similarity is 

always more than 1.92 for intra-similarity based algorithms 

such as arithmetic coding [16] and context tree weighting [18] 

and GenCompress [3].  In Table IV, results from our proposed 

scheme are shown.  Considering only intra-sequence 

similarity, our proposed scheme achieves an average bpb of 

1.9226 which is similar to other existing algorithms based on 

only intra-similarity.  However, if we consider inter-sequence 

similarity by compressing the sequence with reference to 

another chromosome sequence, we can see that the average 

bpb drops to about 1.8434.  In fact, by using a reference 

sequence, the bpb always drops as compared to the case 

without a reference sequence.  The additional savings in bpb 

depend on the similarity between the target and the reference 

sequences.  As chromosome sequences I and VIII have high 

similarity, the bpb is able to drop from 1.8409 to 1.6131.  For 

less similar sequences such as chromosome sequences XI and 

III, the bpb drops by 0.0269 only. 

 

 

TABLE   II 
THE BPBS FOR COMPRESSING THE HOMO SAPIENS MITOCHONDRIAL 

DATASET USING DIFFERENT ALGORITHMS 

Algorithms bpb 

GenCompress 1.9436 

Brandon et al. 0.0314 

RLCSA 0.0395 

RLZ-opt 0.0615 

GDC 0.1873 

FRESCO 0.0807 

Proposed Scheme 0.0389 

 

TABLE   I 
SIMILARITY INFORMATION BETWEEN A HOMO SAPIENS 

MITOCHONDRIAL SEQUENCE AND THE REVISED CAMBRIDGE 

REFERENCE SEQUENCE 

 Average Minimum Maximum 

Sequence length 16287.4 15436 16584 

Repeat length 16286.7 15436 16583 

Percentage of repeat 99.996% 99.946% 100% 

Number of 
modifications per base 

0.0021 0 0.0068 

 

TABLE   III 

THE BPBS FOR COMPRESSING THE 16 CHROMOSOME SEQUENCES IN S. 
CEREVISIAE USING DIFFERENT ALGORITHMS 

Algorithms bpb 

Arithmetic coding 1.9513 

Context Tree Weighting 1.9454 

GenCompress 1.9208 

Brandon et al. NA 

RLCSA 5.8430 

RLZ-opt 2.2776 

GDC 2.0152 

FRESCO 1.9959 
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Noted that algorithm from Brandon et al. [8], RLCSA [9], 

RLZ-opt [10], GDC [11] and FRESCO [12] are specifically 

designed for highly similar sequences.  If the variations across 

the sequences are substantial, they may not be able to 

compress them effectively.  As shown in Table III, we can see 

that in compressing the 16 chromosome sequences of S. 

cerevisiae, RLCSA, RLZ-opt, GDC and FRESCO has a bpb 

worse than the intra-similarity based algorithms.  The first 

three algorithms even could not compress the sequences as 

they have bpb over 2. For Brandon et al. algorithm, 

differential variants information is not available so the 

program cannot be applied to compress the 16 chromosome 

sequences.  On the other hand, our proposed scheme can 

consistently reduce the bpb and has a lower bpb than all the 

existing algorithms.  This shows that our proposed scheme is 

able to compress sequences with different kinds of similarity 

structure. 

C. Compression of Multiple Chromosome Sequences 

As discussed in Section IV.B, the bpb drops by considering 

similarity between two chromosome sequences.  In this part, 

multiple chromosome sequences of S. cerevisiae are 

compressed together.  Table V shows the experimental results.  

The second column shows the average bpb from single 

sequence compression while the third column shows the bpb 

from multiple sequences compression.  We can see that the 

bpb for compressing a number of chromosome sequences 

together is always smaller than that of compressing them 

separately.  For example, the group of compressing 

chromosome sequences IV, V, VI, IX, X and XIV together 

reduces the bpb from 1.9227 to 1.8611.  If the group of 

sequences have high similarity to each other, it is always 

advantageous to compress together. 

 

 

 

 

 

V. CONCLUSIONS 

In this paper, we extend the idea of intra-sequence 

similarity to inter-sequence similarity in DNA sequences 

compression.  Instead of finding base-to-base differences 

between the target and the reference sequences, similar 

subsequences in the target and the reference sequences are 

searched and encoded together to achieve compression.  In 

this way, our proposed scheme is applicable to compress a 

single sequence using only intra-sequence similarity as well 

as multiple sequences with different kinds of similarity 

structure.  Our proposed compression scheme has been 

applied to compress the 16 chromosome sequences of S. 

cerevisiae and a set of individual sequences from human 

mitochondrial data. There is an average improvement of 

4.13% for compression of S. cerevisiae when compared with 

single sequence compression.  For the human mitochondrial 

sequences, the bpb of the proposed algorithm is 0.0389 which 

is comparable to existing algorithms that are specifically 

designed for compressing highly similar sequences. However, 

these existing algorithms are not suitable for sequences with 

partial similarity so that the proposed scheme is general in 

compressing DNA sequences with different degree of 

similarity. 
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