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Abstract—Vehicle verification in two different views can be 

applied for Intelligent Transportation System. However, object 

appearance matching in two different views is difficult. The 

vehicle    images captured in two views are represented as a 

feature pair which can be classified as the same/different pair. 

Sparse representation (SR) has been applied for reconstruction, 

recognition, and verification. However, the SR dictionary may 

not guarantee feature sparsity and effective representation. In 

the paper, we propose Boost-KSVD method without using initial 

random atom to generate the SR dictionary which can be applied 

for object verification with very good accuracy. Then, we 

develop a discriminative criterion to decide the SR dictionary 

size. Finally, the experiments show that our method can generate 

better verification accuracy compared with the other methods. 

Keywords—Vehicle verification, Sparse Representation(SR), 

Boost KSVD. 

I. INTRODUCTION 

Vehicle identification has been applied for vehicle tracking 

and traffic flow analysis in Intelligent Transportation System 

(ITS). There are three different types of vehicle identification: 

detection, recognition and verification. Vehicle detection [1, 

2] identifies the object as a vehicle. Vehicle recognition [7, 9, 

30, 31] identify of the vehicle by finding best match in the 

gallery set. Vehicle verification [3, 4, 6, 8, 15-17, 24-26] 

differentiates whether the object pair is the same vehicle or 

not by using a binary classifier without the gallery set. It can 

also be used for multi-view vehicle tracking. 

The vehicle image representation is always a major issue 

for vehicle identification. Many researchers demonstrate 

different approaches by using the designated features. 

Ballesteros et al. [28] use HOG feature to describe the vehicle 

because the typical appearance of vehicle has clear vertical 

and horizontal edges. Some researchers [1, 2] apply Gabor 

features to describe the vehicle because they are similar to 

human perception. Ying et al. [3, 4] construct input feature 

vectors for SVM classifier by using the nonmetric distance 

between the input vehicle and representative vehicles. For the 

object verification, dictionary representation such as non-

negative matrix factorization (NMF) [22] or sparse coding [16, 

24, 26] present the excellent verification results. However, 

these dictionary methods have not been widely applied on 

vehicle verification. Therefore, one of our major works is to 

test whether these dictionary features and other typical 

features are effective for verification. 

Feature selection encounters two conflict situations: feature 

representation and noise exhibition. For Principle Component 

Analysis(PCA), Discrete Cosine Transform(DCT) and Gabor 

features [21], the noise can only be described by high 

frequency components or smaller principle components. The 

background or non-target objects are represented by major 

principle components or low frequency components. To 

include high frequency component, Principle Component 

Regression [27] and Sparse Representation (SR) [9] are 

proposed based on the regularization constraint. Furthermore, 

In [10, 11, 23], the sparsity of the sparse vector provides 

excellent face reconstruction and recognition results[9]. SR 

has been successfully applied for face verification [16, 24, 25].  

With regularization, the feature set may over-describe the 

training objects. Over-representation with over-complete 

dictionary does not work very well for classification. Zhang et 

al. [13] show SR is not adaptive to the classification very well 

because the over-completing coding may include the 

redundant atoms into the dictionary learning. Wong et al. [26] 

also point out the over-complete dictionary is not an 

appropriate model to represent the object with the insufficient 

trainings samples. One explanation to over-representation 

problem is that the dictionary generation does not follow the 

Restricted Isometry Property [12] (RIP) which is an influence 

factor of feature representation. Beside anti-noise and 

redundant problems, there is another bottleneck for variant 

object verification. The aligned features from pairs of object 

in two different views can be applied for face verification [16, 

24]. With the appearance variations of the vehicle across 

disparate views, direct matching may not provide reliable 

similarity likelihood. 

Here, we propose SR dictionary generation for object 

verification. Different from direct matching methods, we do 

not warp the object from one view to the other view. First, we 

propose Boost K-SVD algorithm and consider the RIP for 

each view. We integrate the features from two views as the 

testing pair and check the similarity. To avoid over-

presentation, we propose the discriminative criteria to 

determine the size of dictionary that makes the sparse matrix 

more compact for representation. 

This paper is organized as follows. In Section 2, we explore 

the basic concepts of RIP and introduce the least square 

solution with different kinds of regularization. In Section 3, 

we develop the system with sparse coding, K-SVD dictionary 

learning, initial atom selection, and particle sample selection. 

In Section 4, we show that our method is better than the other 

methods, and discuss the amount of atoms and the verification 

accuracy. Then, we compare the results by using several 



different feature representations. We also apply our learning 

system on the different types of objects. Finally we have the 

conclusion in Section 5. 

II. RELATED WORK 

Feature selection is essential for object representation and 

recognition. The orthogonal component [1, 2, 36] feature is a 

good solution to represent the input image. However, the 

unrelated components (e.g., the noise or background) existing 

in high frequency components or minor principle components 

may also appear in the major principle components or low 

frequency components. To approximate the input and reduce 

the unrelated components or error, there are two strategies: 

forcing each component with more object details and 

increasing the size of the feature set.   

A. Regularization 

To eliminate the small or unrelated component, we 

decompose the input with the regularization or penalty to 

ignore the weak components. L2-norm penalty is also called 

Rigid Regression of which the component truncated version is 

called PCR. Although L2-norm penalty suppresses the weak 

components inside the circle, the circle constraint implies the 

unrelated input may still be constructed by any two or more of 

major orthogonal components. Furthermore, L1-norm penalty 

not only constraints the weak components into the diamond 

range, but also inhabits the unrelated input at the edge in 

contrast with the circle constraints. Unfortunately, the 

diamond constraint is not differentiable so that there is no 

close from to solve the L1-norm penalty problem and the 

solutions are only resolved by linear programing such as 

OMP [18], Lasso [19] and LARS [20]. However, L1-norm 

penalty cannot eliminate the unrelated input. Therefore, L0-

norm penalty sticks the input into the exact components and 

the unrelated input is eliminated by the cross constraint. 

Unfortunately, L0-norm penalty is a NP-Hard problem. If the 

feature transform matrix has RIP condition, the L0-norm 

penalty can be approximated to L1-norm penalty problem and 

NP-Hard consumption can be reduced to the linear 

programing problem.  

  
Figure 1. The ranges of different norm penalty functions 

B. Dictionary Representation 

According to L1-norm penalty and L0-norm penalty, sparse 

dictionary representation allows more flexibility to represent 

the data. These methods do not impose that the basis vectors 

be orthogonal and focus on de-noising by regularization. For 

SRC, we train the dictionary with enough training samples to 

span each object space. The classifying dictionary just needs 

to construct each test sample by a part of dictionary and does 

not need to consider the uniqueness of feature presentation. 

K-SVD Dictionary leaning and its online version also devote 

the learned dictionary to noise removal or image inpainting. 

However, these dictionary cannot guarantee the fidelity of 

presentation. 

C. Restricted Isometry Property (RIP) 

Regularization may show noiseless feature presentation but 

not guarantee the inverse transform. The representation can be 

confirmed by RIP. To derive the RIP inequality, we assume 

there are all unit column vectors in the transform matrix X. 

Then, to find the bound of RIP, we define β as the 

reconstruction coefficient vector of testing inputs which can 

be decomposed as � = �� + ��  satisfying ��� = ±��� . The 

energy ratio of the reconstruction vector ��  over the 

transform coefficient vector � is written as bellow. ‖��‖�‖�‖� = ‖��� + ���‖�‖�� + ��‖� = ‖��‖� + ‖��‖� + 2∑ ∑ ����������‖��‖� + ‖��‖�  

 = �0, ��� = −���2, ��� = +���                              (1) 

Therefore, if the transform function is independent, the 

range of RIP inequality is written as bellow. 

0 < ‖��‖�‖�‖� < 2 or 1 − δ ≤ ‖��‖�‖�‖� ≤ 1 + �	, 0 < δ < 1 (2) 

Once matrix X is over-determined, each component in the 

matrix becomes more related. Hence, if δ in eq. (2) is small 

enough, the L1-norm penalty solution is enough close to the 

L0-norm penalty solution. There are some tight RIP bound 

[12] to restrict L1-norm penalty into L0-norm penalty. 

Although finding the RIP condition of the over-determined 

matrix is a strongly NP-Hard problem, RIP is still considered 

as a factor to design the near-orthogonal feature transform. 

The dictionary-based representation may not provide fully 

reconstruction property. There is a trade-off between 

representation and reconstruction. Effective representation 

property provides effective classification or verification but 

may not provide effective reconstruction. Therefore, the 

cleanness and noiseless feature presentation should be 

constrained with RIP and L1-norm regularization. It is 

difficult to develop the dictionary with strict RIP, however, it 

is possible to develop a dictionary with relaxed RIP for the 

specific object set. The tight RIP bound (δ≈0) [29] is applied 

to restrict L1-norm penalty into L0-norm penalty. RIP is an 

important factor to design the near-orthogonal feature 

transform. In the following section, we show how to build up 

the dictionary under RIP condition and demonstrate sparse 

representation for verification. 

III. VEHICLE PAIR VERIFICATION 

We develop the vehicle object pair verification by using 

classification technology. Radial base function support 

machine vector (RBF SVM) offers a nonlinear decision 

hyper-plane for many practical classification applications. 



Based on the RBF kernel, Euclidean distance among the test 

instance and support vectors can be used for classification. 

Euclidean distance is the special case of Mahalanobis distance 

of which the basis vectors are independent of each other. 

Therefore, we need to find a set of independent basis vectors 

to ensure that the vector distance measurement can be 

evaluated appropriately. Besides the orthogonal PCA basis, 

sparse coding is another option for component-independent 

representation satisfying RIP. If the RIP ratio of the sparse 

transform is bounded to unity, the SR vectors may not be 

mutual independent. Therefore, discriminative SR 

representation is essential for RBF SVM classifier. 

Our object verification system, as shown in Figure 2, 

consists of (1) Boost K-SVD-based SR dictionary training, (2) 

pair-based RBF SVM object verification, and (3) SR 

dictionary size decision. The dictionary for each view is 

obtain from Boost K-SVD learning algorithm which has the 

better RIP than the original K-SVD.  Boost K-SVD improves 

the RBF SVM accuracy. However, some atoms obtained from 

Boost K-SVD may has less representative property, and the 

verification accuracy may not increase with more atoms. 

More atoms in dictionary require more computation for 

decomposing. Therefore, object verification accuracy depends 

on the appropriate size dictionary. Before RBF SVM training, 

we need to decide the appropriate size dictionary so that we 

can avoid exhausting size testing and then apply sparse vector 

in each view as a SVM input vector for object verification. 

 

 

Figure 2. The construction of pair verification. 

A. Boosting initial atoms of K-Singular Value 

Decomposition (K-SVD) 

Dictionary of appropriate size is required for reconstruction 

with minimal reconstruction error. K-SVD method with the 

typical dictionary training algorithm is usually applied on 

sparse feature extraction [9, 16, 17, 26] and image de-noising 

[10, 11].  K-SVD algorithm starts iteration with K random 

selected initial atoms. However, K-SVD algorithm only 

guarantees the sparsity of the dictionary not RIP. K-SVD may 

not produce the best sparse dictionary. If the sparse feature 

vector is generated by using the one-to-one mapping 

dictionary. In our experiments, the dictionary with RIP shows 

more accurate verification. 

To develop the sparse dictionary, we propose Boost K-

SVD to increase the representation accuracy for object 

verification. Similar to [18], which fits the samples with the 

most related atoms, our algorithm tunes each initial atom that 

is most related to all samples. The atom selection finds one 

sample as the initial atom with maximum summation of 

correlation with the rest of samples as 

 ��� = argmax&' ∑ ()*++,-., -�/(0�1�                 (3) 

and then we add xnew to dictionary X as X=[X, xnew], where yi 

∈Y={ -�, … , -3} is the set of training samples, and xnew is the 

initial atom of the dictionary. If the initial ���  obtained from 

eq.(3) is closest to the principle atom with the maximum 

absolute correlation for all training samples, then the iteration 

of K-SVD can converge at the principle atom faster. 

However, the iteration algorithm requires high computation 

cost to examine each sample to see whether it is closest to the 

principle atom. To replace the computation, we propose the 

initial atom selection algorithm by using particle filtering. 

The particle filtering (or random particle sampling process) is 

similar to the training sample selection process. The particle 

sampling is equivalent to the training sample selection. The 

probability of observation z is related to the expect value of 

the selected samples E[y] of which each sample yi has a 

weight 4�.  The selected training sample set can be denoted as 

M particle samples. The identity of the training samples is 



modeled by the state variable s. The initial weight  4� of each 

sample is assigned with 1/N, where N is the number of 

training samples. The prior probability distribution of the 

observation z at iteration k is defined as 

 P,z7|s7/ = : ;	E=->?                             (4) 

where  Y∈∈∈∈ RD×N is the matrix composed of all training samples, 

D is the sample dimension, and the expect value of the 

selected sample set at the k
th

 iteration is denoted as 

	E=@>? = ∑ ω?� ; yCDC1�                             (5) 

The k
th

 iterative weight update of the i
th

 sample is defined as  

                    	ω?� = ω?E�� ; P,z7E�|F?−� = G/                    (6) 

The iteration stops when the reconstruction error is less than 

certain threshold ε as  

		H: − P,zk(sk/⋅J=->K‖J=->K‖ HL < ε                                       (7)  

The initial atom searching is described in the following 

algorithm. 

The atom training needs to be reformatted to minimize the 

error by tuning the generated atoms to all training samples. 

Similarly, Elad et. al. [10, 14] proposed K-SVD by using 

generalized K-means clustering to avoid data overfitting and 

reweighting each atoms by the sparse vector with L1-norm 

penalty. The initial atom is randomly selected in K-SVD. 

Instead, our Boosting K-SVD dictionary construction is based 

on appropriate initial atom selection so that the spare vectors 

become more representative and the energy is concentrated on 

a few components. The dictionary learning is based on 

minimizing the objective function J defined as, 

N	 = OGP∑ �� (Q� − ∑ ���R1� (�0�1� + ∑ S|��|�R1�  (8) 

where N is the size of training set, K is the size of the 

dictionary, βji is the j
th

 reconstruction coefficient of the i
th

 

input sample yi, �  is the j
th

 atom. To minimize J, we take 

partial differential of J with respective to �  and βUC 
respectively as 

VNV� =W-X��R
1� −W���0

C1� � = 0 

and          				 YZY�'[ = ��\Q� − ���] − SFG^P\��] = 0 

 (9) 

The K-SVD can be obtained by solving eq.(9), where the 

projection on atom �  must be higher than the Lagrange 

multiplier λ if the βUC partial differential holds for each sample 

i. Here, we modify K-SVD by iterative updating � by 

removing the other components and then averaging the 

residues in the training samples. We rewrite eq.(9) in the 

iteration form as 

�,P + 1/ = 1∑ ���0C1� W_-X − W �?,P/�?�R
71�,?` a0

C1� ∙ �� 	,	 
subject	to	�� = ���,P/Q� − SFG^P\��], (��,j/Q�( − S k 00, *jlm+nGFm	

    (10) 

Third, we minimize J by adjusting the atoms, however, the 

residues of the training samples may still have other 

representative components. To obtain the residues, we need to 

remove the atom component from all training samples and 

ensure that the dictionary with RIP constraints indicating that 

the atoms for reconstruction are mutual uncorrelated. Then we 

can pick up a new atom from the set �o = Y − Xβ, where �o 

is near orthogonal to X. The process of Boost K-SVD with 

RIP is described in algorithm 2. 

 

Figure 3. Two different cases in K-SVD algorithm, vectors in red are 

training samples. 

Figure 3 shows the original K-SVD using different initials. 

In the ideal case, if there are good initial atoms (vectors in 

brown) selected for K-SVD, the angles among the final atoms 

(green vectors) will be large after the iteration. Unfortunately, 

if the improper initials are selected, the final atoms will not be 

orthogonal after the iteration. The improper initials not only 

cause larger reconstruction errors, but also generate the 

dictionary with no RIP property. However, our Boost KSVD 

keeps the atoms less mutual correlated because the initial 

atom is iteratively learned from updating training samples 

satisfying RIP and the atom generation converges faster than 

K-SVD.  

Algorithm 1:  Initial Atom Searching: 

Denotations:  Y is the training set, N is the number of training 

samples, M is the number of particle samples, and yr is a selected 

sample. Input: Y={y1,…yN}; Output: xnew. 

Initial: 

Set 	s,t?|u?/=1/N as an uniform distribution, k=1 

While  eq.(7) is not satisfied do 

Begin 

Random sample selection using P,z7|s7/	 
       Apply eg. (5) to find E[y]k  

k=k+1 

Apply eq. (4)  to compute  P,z7|s7/ 
Update 	s,t?|u? = G/, G = 1,… , v,   ( Importance updating) 

End  

Find the initial atom 	�wxy = argmax-[ |)*++,-� , z=->/| 



As shown in Figure 4, the original K-SVD reconstructs the 

input using the holistic vehicle dictionary. Because of the 

initial random atom selection, the original K-SVD cannot 

reconstruct the samples from the dictionary of small size. K-

SVD requires more atoms for reconstruction. 

 
Original           5 atoms              8 atoms              10 atoms 

 
15 atoms          20 atoms           25 atoms            30 atoms 

Figure 4. The K-SVD reconstruction 

To eliminate the appearance variance from K-SVD, our 

boost K-SVD is applied to reconstruct the input image so that 

we can make sure all atoms fitting the training data. In 

contrast with K-SVD, our boost K-SVD has less shape 

distortion and less reconstructed background. Figure 5 shows 

that our boost K-SVD finds more compact dictionary 

representation, and the reconstruction is more effective than 

the original K-SVD. 

 

 
Original           5 atoms              8 atoms              10 atoms 

 
13 atoms          15 atoms           18 atoms            20 atoms 

Figure 5. Boost K-SVD reconstruction 

B. Pair based object verification 

 The larger sparsity among the decomposed components 

will make the reconstructed representation more precise. Our 

object verification is based on SR representation that 

demonstrates successful outcome. In face verification [8, 16, 

17, 24], the aligned input pairs are represented by the same 

transform model. However, vehicles usually have different 

appearance in various views. It is hard to warp the vehicles to 

the same viewpoint. The scale and illumination normalization 

are also difficult because the shape of different vehicles and 

illumination in two views may be totally different. 

Here, we simplify the object pair verification problem to a 

classification problem. The viewing direction is fixed for each 

camera, the distance between two object pairs in views V1 and 

V2 is defined as 

P,j = *|{�, {�/ = m|}H~�,��}~�,��H
�

� � ∙ m|}H~�,��}~�,��H
�

� �
 (11) 

where �� is the object vector in the model and �� is the testing 

vector and σ is the variance of input. If �� is enough close to 

object �� 	 in views V�  and V� , then ��  is similar to �� . We 

assume that the object vector pair in two views are mutual 

independent and the vector dimension is not fixed. The 

distance between the pair of vectors which are merged into 

one single vector is described as  

P\j = *(���,��] = m|
}H~��}~��H�� �

                   (12) 

where ��� = ���,��� |��,��� �� and ��� = �x�,��� |��,��� ��. If the set 

includes all object pairs, the pair similarity can be examined 

by inspecting each pair in the set using eq.(12). However, the 

exhausting pair examining costs too much computation when 

the data set is enormous. The object verification is developed 

by training the decision margin function constructed by 

similar/different object pairs near the decision margin similar 

to RBF kernel SVM. 

RBF kernel SVM is effective for the object verification. 

However, when the dimension of the pair vector increases, it 

incurs the curse of dimensionality that means although two 

data are very similar, the distance between them is still large. 

Therefore the less noise on each dimension affects the input 

with obvious difference and influence the classification 

results of RBF kernel SVM. Inspired by [3, 4, 6], we 

represent the pair inputs from two separate views by two SR 

feature vectors which are combined as input ���  as eq.(12). 

The dimension of the pair of inputs may be different so that 

warping and alignment distortion cannot be avoided.  

In [16], the testing input pair is warped to the frontal view 

for verification, however, the warped image may cause some 

shape or context distortion. According to [3, 4, 5], the good 

object representation will assure the verification accuracy 

without any warping or fixing the dimensions between the 

testing object of the input pair. Moreover, nonmetric distance 

has the similar shrinkage as L1-penalty, so we train each 

dictionary with the holistic images without warping for each 

view and use SR measurement in that designated view. Here, 

we present the SR feature vector using boost K-SVD 

dictionary, and rewrite eq.(9) in RBF SVM classifier form as 

f\��] =Wn� ∙ exp|−��� − ����� �0�
�1� + b,	 

�� = ���|���	∀��,��	from	different	dictionaries.          (13) 

Algorithm 2: Boost K-SVD 

Denotations Y	is	the	training	set, X is dictionary with final size K, 

Initial X={φ} 

 Add the initial atom ����� to dictionary as X=[ X, �����], atom x∈X 

For k = 1 to K 

Begin 

While  ∑ (�,P + 1/ − �,P/( k  ?1�   

  Begin 

Use eq. (9) to solve the sparse vectors ββββ of all training samples  

Update the atoms by eq.(10) 

Normalize �,P + 1/=�,P + 1//P*+O,�,P + 1// 
      End 

 

Generate a new atom  ���  from ¢o = : − £¤ 

Add ���  to dictionary X as X=[ X, ��� ] 

End 



We compare our boost K-SVD and original K-SVD by the 

sparsity of the dictionary and the verification accuracy using 

our database which includes the images of two views of 250 

individual vehicles. Here, we pick up the samples from the 

near frontal view as shown in Figure 4 and near side view as 

shown in Figure 5 to examine the algorithm performance 

without any alignment or warping. Our boost K-SVD not only 

has better reconstruction than K-SVD, but also generates the 

sparser dictionary and achieves better object verification 

accuracy. Figure 6 (a) shows the accuracy between K-SVD 

and boost K-SVD and Figure 6(b) shows the sparsity of them. 

 

(a) Accuracy comparison 

 

(b) Sparsity comparison 

Figure 6. Comparison between K-SVD and boost K-SVD by sparsity 

and verification accuracy. 

C. Discriminative criteria of Verification for Dictionary 

Size Evaluation 

Although Figure 5 shows that our method also has more 

accurate presentation than K-SVD on verification but keeping 

adding atoms into the dictionary may not improve verification 

apparently. It implies that not all atoms are effective for 

verification. To find the relationship between the discriminant 

of the sparse vector pair from two dictionary and decide the 

appropriate size of the dictionary, the discriminative criteria 

based on RBF kernel is designed as below. 

+¥ = ∑ ¦§¨©ª,©ª«© �¨�	,E¬�©E�©ª¬�/		,�ª∈=�,0>¦§¨K �¨�	,E|�©E�K|�/		,?∈=�,R>3®1� ,           (14) 

where N is the size of the positive pair set and K is the size of 

negative pair set, β®  is one of selected positive pair sparse 

vectors, β®ª are the other positive pair sparse vectors, and β7 

is the negative pair vector. The overall discriminant should be 

considered with all training pair vectors, so we take the 

summation of the ratio with the intra estimation over the inter 

estimation for all pair of samples. 

The classifier with the better accuracy will have larger 

discriminative ratio +¥ , due to the fact the between-class 

distance as the factor in the denominator is larger than the 

within-class distance. We estimate the discriminative ratio +¥ 
with the nonlinear function exp(.), because the ratio of 

positive/negative distribution as shown in Figure 7 cannot be 

separated by a linear decision plane. The samples are not only 

non-separable but also unbalance distributed. Enormous 

negative samples bring a large within class distance which is 

neglected in eq.(14).  

 

Figure 7. Unbalance distribution of training samples 

We apply the discriminative ratio rd  to our database. Figure 

8 shows the accuracy vs dictionary size and the discriminative 

ratio vs dictionary. The highest discriminative ratio of Boost 

K-SVD occurs at 10 atoms in each view dictionary. Adding 

more atoms cannot improve the accuracy for object 

verification. It is because Boost K-SVD has constructed the 

major components in the dictionary.  As shown in Figure 8, 

although most of K-SVD discriminative ratios are higher than 

Boost K-SVD, the ratios cannot indicate correct discriminant 

estimation. It is because K-SVD dictionary has less sparsity 

without RIP property. It makes the between-class distance in 

eq.(14) much smaller than the within-class distance. K-SVD 

cannot be appropriately evaluated by the discriminative 

criteria which are applied effectively for BoostK-SVD 

dictionary with RIP condition. 

 

 



 

Figure 8. Accuracy and discriminative ratio via dictionary size 

IV. EXPERIMENT 

In this section, we evaluate the effectiveness of our 

BoostK-SVD object pair verification among different 

verification methods and different type of vehicle pairs. 

Because our Boost KSVD dictionary has good representation 

under the clustering data, VPTHU (Vehicle pairs captured in-

campus or out-campus of Tsing Hua Univ.) is more 

appropriate to build up side/frontal view dictionaries. We also 

compare our method performance with some methods on the 

vehicle database. Meanwhile, we show the over fitting 

problem in the databases by our discriminative criteria. 

In the resampling process, the most related atom to the 

training sample will be the most likely one to be selected. We 

adopt Particle filtering to find the initial atoms. To compare 

the computation complexity, we assume the complexity of 

exhausting search is O(N
2
), and N is the size of training set. 

The complexity of Particle initializing is O(N*p*I). Here p is 

the amounts of particle and I is the iteration. If p*I<N, then 

applying Particle filtering requires less computation than the 

exhausting search. The computation time of atom 

initialization with 8 particles and 10 time iterations is 0.2179 

sec, whereas the exhausting search spends 0.6202 sec.  

A. Database introduction 

The VPTHU consists of in-campus vehicle set and out-

campus vehicle set. There are 42 vehicle pairs captured in 

two-hour video which are recorded at the 20 meter-long road 

in-campus and 500 pairs captured in the eight-hour video 

captured at the terminals of the 1.5 km street out-campus. 

There are many different type of vehicles and various lighting 

conditions in both video as shown in Figure 9, 10. 

 

Figure 9. Samples of in-campus vehicle set. 

 

Figure 10. Samples of out-campus vehicle set. 

B. Improvement of BoostKSVD 

We estimate our dictionary representation and others by 

ROC curves as shown in the figure bellow. The threshold of 

the decision value from the SVM classifier is varied to 

generate ROC curves. Our Boost K-SVD has the better 

performance on positive pairs and the similar performance on 

negative pairs. 

 

Figure 11. ROC curve. 

Boost K-SVD obtaining the sparser components than 

KSVD has been proven by the experiment on the database in 

last section. We show that it offers the similar results on the 

VPTHU out-campus set. In this vehicle experiment, we pick 

up 250 the same positive pairs and random 750 the different 

negative pairs as the training samples, and the rest of the 

positive pairs and other 750 random negative pairs as testing 

samples. The sparsity comparison between Boost K-SVD and 

K-SVD is shown as Figure 12. In Figure 12, Boost K-SVD 

can offer the sparser vectors constrained by minimize L1-

norm than K-SVD. It also show the better accuracy of vehicle 

verification results using our sparse coding Boost K-SVD. 

 



 

Figure 12. Accuracy and sparsity between K-SVD and BoostKSVD 

C. Other comparisons 

Boost KSVD is applied on the VPTHU out-campus data set 

as shown in Table 2. In [29], the calibration for vehicles does 

not work very well because recovering the side appearance of 

the vehicle to the frontal view by using the warping technique 

is not accurate. 

Table 1. Vehicle verification with/without calibration. 
Vehicle verification Calibration Non-Calibration 

Boost K-SVD 87.2 89.6% 

K-SVD 84.2 88.2% 

PCR 85% 87.2% 

 

Besides PCR, K-SVD, Boost K-SVD, nonmetric 

distance[3] is another type of feature applied on vehicle 

verification. We test our Boost K-SVD and nonmetric 

distance with the training samples in VPTHU in-campus set 

consisting of 42 positive pairs and 360 negative pairs. In 

Table 2, using Boost K-SVD demonstrates better accuracy 

than nonmetric distance under the same representative 

components. 

Table 2. The Accuracy of Boost KSVD and nonmetric distance 
Accuracy 

4 atoms in 

dictionary 

6 atoms in dictionary 8 atoms in 

dictionary 

93.3% 93.8% 94.7% 

4 embedded pairs 6 embedded pairs 8 embedded pairs 

91% 93% 94% 

 

However, nonmetric distance is not an efficient measure 

feature for VPTHU out-campus data set as shown in Figure 

13. It shows that the embedded pairs cannot represent the 

testing data effectively and each embedded pair is not unique. 

The vehicle verification with nonmetric distance is not 

effective. The other three methods indicate that the redundant 

representative component and the verification accuracy are no 

good either. Overall, our method using Boost KSVD 

demonstrates the best accuracy and stability. 

 

Figure 13. The verification accuracy of using BoostKSVD, KSVD, 

PCR and nonmetric distance 

V. CONCLUSIONS 

We develop the object verification system by classifying 

the object pairs and demonstrate a reliable accuracy. We 

propose the Boost KSVD to improve the dictionary 

representation which demonstrate better accuracy and stability 

of vehicle verification process. Furthermore, we introduce the 

discriminative criteria to obtain the compact dictionary 

without the redundant representative components. 
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