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Abstract
I-vector adaptation of DNN-HMM acoustic models has

shown clear performance improvement for speech recognition.
In this paper, we study this technique on Babel task. we use
Swahili as target language (training data of 50 hours) and an-
other 6 languages as multilingual resources to train i-vector ex-
tractors respectively. Our study shows that i-vector extractors
trained with more multilingual data only produce slightly im-
proved results. Moreover, we compared two i-vectors adapta-
tion methods, 1) concatenate i-vectors with spectral features; 2)
predict a bias term adding it to spectral features from i-vectors
using a NN. When DNN is trained from scratch, the two meth-
ods perform similarly. However, only the second method is
appropriate in a cross-lingual transfer learning scenario. We
investigate it as well, and results show further word error rate
reduction can be gained.
Index Terms: I-vector, deep neural network, adaptation, multi-
lingual, speech recognition

1. Introduction
Since Deep Neural Network (DNN) became dominant for
acoustic modeling [1–4], research on how to adapt DNN based
acoustic models is increasingly drawing attention in Automatic
Speech Recognition (ASR) community. This is because, al-
though DNN based acoustic models are able to yield signif-
icantly improved results compared with conventional GMM-
HMM [5], they can still suffer from performance degrada-
tion due to training and testing speaker (or environment) mis-
matches. However, it is not straightforward to conduct DNN
adaptation, since no explicit structure in DNN is responsible
for modelling speaker (or environment) dependent characteris-
tics. dependent characteristics. Moreover, due to limited adap-
tation data and large number of adapted parameters in DNN, di-
rect weight update is obviously infeasible. Therefore, some cir-
cumvents must be adopted. Right now, there are various DNN
adaptation methods that can be broadly divided into three cate-
gories [6].

The first category of adaptation work is targeted at model
level adaptation referring to that input features are fixed while
parameters of network are updated. In [7], Yao et al proposed
to do adaptation by updating the bias of the top hidden layer
of DNN using test data. In [8], a Speaker Adaptive Training
(SAT) recipe was proposed to facilitate DNN based speaker
adaptation, in which a speaker-dependent (SD) component is in-
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serted between the bottom hidden layers of the original speaker-
independent (SI) DNN (SI-DNN), and it is updated with the
speaker-dependent data. More recently, [6] proposed to insert a
speaker-dependent layer on top of each activation layer to scale
the output of activations, as the connections between those acti-
vation and speaker-dependent layers are pairwise, the total pa-
rameter number is very limited, and the effectiveness has been
demonstrated in unsupervised speaker adaptation work.

The second is mainly aimed at feature level adaptation,
though DNN parameter update is also considered when nec-
essary. Perhaps, one of the most relevant examples is fMLLR
based DNN adaptation [5], in which GMM-HMM based fM-
LLR features are taken as input to adapt DNN indirectly. More
directly, [9] and [10] successively proposed to train a speaker
specific vector as a speaker code, in parallel with regular acous-
tic features to adapt the DNN with or without a sub-network.

Besides, the third category is using auxiliary features to
conduct DNN adaptation [11]. For instance, i-vectors based
speaker adaptation under DNN acoustic modeling framework
belongs to such a category [4,12–17]. It is known that i-vectors
encapsulate speaker characteristic information [18, 19]. When
they are concatenated with the regular acoustic features, both
speaker peculiarity and phonetic characteristics are simultane-
ously learned by the DNN, realizing speaker invariance based
ASR. The advantage of the framework lies in its simplicity
and only one-pass training and decoding needed. In contrast
to the concatenation framework, [20] has recently proposed an-
other i-vector based SAT method. In this method, the speaker-
dependent feature, which is output by a trained sub-network tak-
ing i-vectors as input, is added to the regular acoustic feature as
a bias to adapt the SI-DNN.

In this paper, we improve the effectiveness of i-vector based
DNN adaptation using multilingual resource from two perspec-
tives. First, we use multilingual data to train i-vector extractor
that includes universal back ground model (UBM), total vari-
ability matrix etc [4, 18], to extract robust i-vectors. We use 6
language data as source multilingual data and Swahili [21] as
target language data from Babel program1. It is found using
much more multilingual language data to train i-vector extrac-
tors only produces slightly better results. Secondly, we try to
adapt the multilingual DNN using i-vector based speaker adap-
tive training method proposed in [20]. We call this procedure
as cross-lingual transfer learning. Specifically, the multilingual
DNN is not i-vector adapted, but we are intended to use i-vector
to adapt the multilingual DNN when we do cross-lingual trans-
fer learning on the target language. In this scenario, feature

1http://www.iarpa.gov/index.php/research-programs/babel.



concatenation based adaptation method such as [4] is not appli-
cable, due to the DNN training in [4] is always conducted from
scratch. Briefly, we have a multilingual DNN trained with the
method proposed in [23], we first tune it on the target Swahili
language, obtaining a language specific DNN, then we perform
i-vector based speaker adaptation on such a DNN using the
method in [20], and get further performance improvement com-
pared with that without i-vector adaptation employed.

2. Data resource description
All experimental data is from NIST OpenKWS15 evaluation
program [21]. In OpenKWS15, it contains multilingual data,
which is introduced to evaluate the effectiveness of multilin-
gual training for surprise language (Swahili) under low-resource
acoustic modeling condition. Specifically it refers to the Very
Limited Language Pack (VLLP) case in that only about 3 hours
of transcribed data is provided [21]. Except for the VLLP data,
NIST also released FLP data as usual. In this paper we use FLP
training data as the target data instead. Tables 1 and 2 describe
the multilingual and the surprise language Swahili data respec-
tively.

Table 1: Multilingual data description. Note that the “Id” is
allotted by Babel program, and “Len. (hrs)” stands for over-
all hour length of the corresponding language data, while “Ave.
Sec./Utt.” stands for average second per utterance.

Language (Id) Len. (hrs) #spker Ave. Sec./Utt.
Cantonese (101) 141.3 952 6.35

Pashto (104) 78.4 959 4.03
Turkish (105) 77.2 963 3.38
Tagalog (106) 84.5 966 3.27

Vietnamese (107) 87.7 954 4.01
Tamil (204) 69.4 724 3.85

Table 2: Swahili (202) data description

Data set Len. (hrs) #spker Ave. Sec./Utt.
FLP training 55.4 496 4.08

dev 10.7 120 3.55

To speed up the turnaround to develop an ASR system with
less human intervention, NIST tried not to release manual lexi-
con during OpenKWS15 evaluation period. This requires each
participants will either learn a lexicon, or use grapheme lexicon
instead to build an ASR system. We choose to use grapheme
lexicon for simplicity, and our vocabulary comes from the FLP
transcriptions [21]. We note that NIST released a manual lex-
icon for the FLP system after evaluation. However word er-
ror rate (WER) difference is marginal between the two sys-
tems using these two lexicons, indicating Swahili language is
very regular in terms of pronunciation rules. Besides, NIST
also released varieties of text data to build language models
(LMs) [21]. However for simplicity, we do not use the data,
and only the FLP transcription is used to build trigram language
model for testing instead.

3. Multilingual i-vector estimation
3.1. Multilingual i-vector extractor training

As mentioned, when target language is limited, the UBM cannot
be well estimated, resulting in poorly estimated zero order and

Figure 1: MBNF based i-vector estimate diagram

centered first-order statistics [4], which are essential for total
variability matrix and i-vector estimation. Therefore it is nec-
essary to employ more and diversified speaker data to estimate
more robust i-vectors. In Babel program, each language data is
limited, there are generally less than 100 hours even for the FLP
case as shown in Table 1. However, there are many languages
in the overall Babel data sets. Hence it is natural to think about
using the multilingual data to train i-vector extractors.

Moreover, which kind of front-end features is used to train
i-vector extractor is also investigated as well. In speaker recog-
nition area, [24, 25] successively showed it can yield improved
results using BNF as front-end to train i-vector extractor. In
ASR area, [20] also got improved results using i-vectors ob-
tained from a similar setup to adapt DNN. In this work, except
for using monolingual BNF, we also use MBNF as front-end to
train i-vector extractor. To obtain MBNF, We follow the frame-
work proposed in [22] to train MBNF extractor using all 6 mul-
tilingual language data from Table 1.

3.2. MBNF based i-vector extraction

Once MBNF extractor is ready, we can use it to generate MB-
NFs for the source (multilingual languages) and target language
data respectively. The former is used to train i-vector extractor,
and the latter is used to estimate the i-vectors for the target lan-
guage (Swahili). This procedure is illustrated in Figure 1. Note
that Figure 1 also describes the monolingual BNF based i-vector
estimate procedure, except that the source and target languages
are the same and only a mono-lingual BNF extractor is used
instead.

4. I-vector based DNN adaptations
We try two different i-vector based DNN adaptation methods.
The first is following the recipe proposed in [4]. We call it as
feature concatenation based adaptation method. The second fol-
lows the recipe proposed in [20], as is depicted in Figure 2, and
is a speaker adaptive training (SAT) by estimating feature bias.

4.1. Feature concatenation based adaptation

In method proposed in [4], i-vectors are appended to the regular
acoustic features to adapt DNN. This method is simple but ef-
fective. Since it is not pursued to change the topology of DNN
in this scenario (actually there are minor changes in [16]), the
main focus is on how to extract robust i-vectors. For instance,
[26] assumes the prior of i-vectors is not well described with



Figure 2: Illustration of i-vector based DNN acoustic model
adaptive training method, using a normalized output by a
generic sub-network as a bias to add on the regular acoustic
features, where the sub-network is trained by i-vectors, while
the main DNN is trained by the cascaded features

standard normal distribution for shorter utterances, a counting-
smooth prior was introduced to estimate i-vectors of shorter ut-
terance. [15] proposed using clean features to collect statistics
that are necessary for noisy data i-vector estimate. As a result,
parallel features are required.

Apart from robust i-vector estimate, i-vectors can be ex-
tracted either on utterance level [12] or on speaker level [4, 13].
In this work, both training and testing i-vectors are extracted at
speaker level.

4.2. Speaker adaptive training by estimating feature bias

Recently, [20] proposed a framework for DNN based speaker
adaptive training using i-vectors as illustrated in Figure 2. From
Figure 2, i-vectors are first normalized by a sub-network, whose
output is added to the regular acoustic features as a bias, yield-
ing the cascaded features to train the main DNN. The training
can be done with two steps. First, once the main DNN is trained
(by some kind of acoustic features) and i-vectors of training data
are ready, the sub-network can be trained, while the main DNN
is kept fixed at this moment. After that, we fix the sub-network
and go back to update the main DNN with the cascaded features.
For decoding work, once i-vectors are ready, only one-pass de-
coding is needed.

We notice that such a DNN adaptive training procedure
is reminiscent of the conventional GMM-HMM based speaker
adaptive training. Besides, [27] justified the motivation of the
framework. Actually, the idea is reminiscent of fMPE train-
ing [28]. Specifically, if we use yt = xt+net(vt) to represent
what Figure 2 depicts, it is a kind of “similar” to fMPE trans-
form formula yt = xt + Mh(t). Both are aimed to estimate
an appropriate bias to solve speaker or environment mismatch
issue.

We adopt this framework because the main DNN is not
trained from scratch, which makes it possible to keep the knowl-
edge the main DNN initially learned. Moreover, the subsequent
i-vector based speaker adaptive training just amounts to a fine-
tuning process over the main DNN with cascaded features. This
is different from method in [4], since the DNN in [4] is trained
from scratch for each adaptive training. Specifically in our case,
an initial multilingual DNN2 is trained from the data in Table

2The initial multilingual DNN can be trained with or without i-
vector adaptation. But if it is the latter case, it would be very time-
consuming using the proposed method in [20]. In this paper, the initial

1. At the beginning , we do cross-lingual knowledge transfer
learning for Swahili language, yielding a new DNN. Then we
use i-vectors to adapt the new DNN, to see if further perfor-
mance improvement can be obtained. As mentioned earlier, the
method in Figure 2 is suitable for our requirement.

5. Experimental setup
Experiments are conducted using Kaldi toolkit3. We build our
ASR system from conventional GMM-HMM to DNN-HMM
acoustic models. For GMM-HMM, we train up to SAT GMM-
HMM using MLE criterion with 40 dim features, which are
transformed with LDA plus MLLT over PLP plus pitch fea-
tures [29], using a 4-1-4 (9) context frame window. For DNN
training, input features are filter-bank plus pitch (FBank+pitch)
features, and all DNNs have five hidden layers, each with 2048
neurons. Input features are sequentially mean normalized, ham-
ming windowed, and DCT transformed before they are fed into
DNN, and they are configured the same with [22] in the case of
no i-vectors considered. All frame windows are set 21 with a
context 10-1-10. Training criteria for DNN are cross-entropy
(CE) and state-level MBR (sMBR) sequence criteria respec-
tively.

For MFCC feature based i-vector extraction, we use 23
dim features that have 20 dim MFCC plus 3 dim pitch fea-
tures. For BNF based i-vector extraction, the BNFs are 30
dim. They are generated by the stacked DNNs [30]. The topol-
ogy of the stacked DNNs are 1500-1500-80-1500-#tied-states
and 1500-1500-30-1500-#tied-states respectively, and also take
FBank+pitch features as inputs, but use different frame con-
texts. See [22] for details. In all cases, i-vector extractors are
trained with features including static, plus the first and second
delta features respectively. To yield robust i-vector extractor
estimate, we remove those silent speech segments using a sim-
ple energy based VAD. Throughout experiments, we keep using
2048 mixtures for all UBMs, and the corresponding dimension
of i-vectors are fixed with 100.

Some tricks for i-vector extraction are noteworthy. First,
during i-vector extractor training process, we treat each utter-
ance as different speaker, so as to accumulate statistics to better
model intra-speaker variability. Secondly, we concatenated all
utterances from the same speaker when we extract i-vectors, as
mentioned in Section 4.1. We found both factors are important
to affect performance. Last but not least, all i-vectors are length
normalized as advocated in [31], and we have not tried different
i-vector dimensions, as [4] and [13] showed it is not a signifi-
cant factor to affect the performance.

6. Results
6.1. Monolingual i-vector based DNN adaptation

Table 3 reports our baseline results with two i-vector based
DNN adaptation methods, where i-vector extractors are trained
with only the target Swahili data.

From Table 3, we see two i-vector based DNN adaptation
methods are consistently making performance improvement to
different extent with either DNN CE or sMBR sequential train-
ing. First of all, Results in Table 3 reveal that adopting BNF
features for i-vector extractor training is more effective than
MFCC+pitch. Secondly, the “Concat” and the “Bias” adapta-
tion methods are comparable in terms of performance, partic-

DNN is not i-vector adapted.
3https://github.com/kaldi-asr/kaldi



Table 3: Results of i-vector based DNN adaptation, with i-
vector extractors trained with Swahili FLP data, where “Con-
cat” represents feature concatenation based adaptation method,
and “Bias” represents SAT by estimating feature bias method.

Systems WER(%)
CE/MLE sMBR

Baseline (without i-vector adaptation)
GMM-HMM, SAT 54.8 -

DNN-HMM 48.5 45.6
Monolingual i-vector extractor systems (DNN-HMM)
MFCC+pitch, “Concat” 48.4 45.2

MFCC+pitch, “Bias” 47.6 45.0
BNF, “Concat” 47.2 44.6

BNF, “Bias” 47.1 44.4

ularly in the case of DNN sMBR training. Thirdly, the best
absolute WER reductions are 1.4% (2.88% relatively) and 1.2%
(2.63%) in both DNN CE and sMBR training cases respectively,
when the “Bias” SAT method is employed using i-vectors that
are estimated with BNF based i-vector extractor. However, the
improvements are moderate compared with that reported from
previous work [4, 13]. There are several factors accounting for
this situation. One of the main reasons might be due to that
training utterances are very short (average length is less than 5
seconds), resulting in poor i-vector estimate, see Table 2. Be-
sides, Babel data is rather challenge, as can be seen from our
baseline results in Table 3.

6.2. Multilingual i-vector based DNN adaptation

Table 4 compares the performance of two i-vector based DNN
adaptation methods by using MFCC+pitch and MBNF features.
We note that i-vector extractors in this table are trained with
multilingual data in Table 1, and the target Swahili language
data is not included in all cases. Actually, we have not gained
much improvement when we include Swahili language data to
train multilingual i-vector extractors .

Table 4: Results of i-vector based DNN adaptations, where i-
vectors are estimated with the extractors that are trained with
multilingual data

Systems (DNN-HMM) WER(%)
CE sMBR

MFCC+pitch, “Concat” 47.8 45.1
MFCC+pitch, “Bias” 47.3 44.7

MBNF, “Concat” 47.4 43.9
MBNF, “Bias” 47.4 44.8

Comparison between Tables 4 and 3 indicates multilingual
based i-vector extractors generally yield better results. Espe-
cially with MFCC+pitch features, we consistently get better re-
sults. However, the best result is from MBNF based “Concat”
method, which yields 1.7% absolute WER reduction (3.73%
relatively) in the case of DNN sMBR training. Overall, i-vector
extractors trained with MBNF yield mixed results. Compared
with Table 3, Table 4 sees no improvements in the DNN CE
training cases with either method. Besides, it appears that the
“Bias” SAT method suffers from over-fitting when i-vector ex-
tractor is MBNF trained.

6.3. Multilingual DNN based speaker adaptive training

Different from Sections 6.1 and 6.2, in which the target DNNs
to be adapted are monolingual DNNs, In this section, we con-
duct multilingual DNN based adaptation, where only the “Bias”
SAT method can be adopted. Table 5 shows our i-vector based
multilingual DNN adaptation results, using multilingual DNN
as baseline. Specifically, we first have a multilingual DNN
trained with the multilingual data in Table 1. See [22] for the
details of multilingual DNN training, but notice that we use
6 languages instead of 4 languages in this paper. Then, we
do cross-lingual knowledge transfer learning using the target
Swahili FLP data, yielding a new DNN, which yields the re-
sults as shown in the first row of Table 5. After that, we do
i-vector based adaptation training over such a new DNN, us-
ing the “Bias” adaptive training method. In Table 5, two kinds
of multilingual features, MFCC+pitch and MBNF features, are
employed to train i-vector extractors respectively.

Table 5: Results of i-vector based multilingual DNN adaptation,
using “Bias” adaptive training method, and multilingual DNN
results as baseline

Systems (DNN-HMM) WER(%)
CE sMBR

Multilingual (no i-vectors) 46.6 44.1
+multilingual MFCC+pitch 45.4 43.4

+MBNF 45.3 43.3

Comparing the first row of Table 5 and the second row of
Table 3, we see the DNN multilingual training gets 1.9% and
1.4% absolute WER reductions with the DNN CE and sMBR
trainings respectively. Moreover, from Table 5, i-vector adapted
DNN systems consistently get moderate performance improve-
ments over the corresponding multilingual DNN systems. The
improvements from i-vector based adaptive training indicates
though the DNN is trained with a lot of multilingual data, it
still needs speaker information (i-vectors) to normalize speaker
dependent variations, yielding better results on the target lan-
guage.

7. Conclusion
In this paper, we employed multilingual data resource to im-
prove i-vector based DNN adaptation method, using two differ-
ent kinds of adaptation frameworks. Improvements come from
two aspects. First, we tried to use multilingual data to train
i-vector extractors. Since multilingual data contains more di-
versified speakers, such i-vector extractor yields better i-vector
estimate, and hence better DNN adaptation results. Especially,
when the i-vector extractor is trained with multilingual BNF,
it yields the best results. Secondly, using the speaker adaptive
training framework , we also tried i-vector adaptation method
in a cross-lingual transfer learning scenario, and got further im-
proved results as well.
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[30] F. Grézl and M. Karafiát, “Semi-supervised bootstrapping ap-
proach for neural network feature extractor training,” in Automatic
Speech Recognition and Understanding Workshop (ASRU), 2013.

[31] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector
length normalization in speaker recognition systems,” in Proceed-
ing os INTERSPEECH, 2011.


