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Abstract— we propose a voice conversion framework to map 

the speech features of a source speaker to a target speaker based 

on deep neural networks (DNNs). Due to a limited availability of 

the parallel data needed for a pair of source and target speakers, 

speech synthesis and dynamic time warping are utilized to 

construct a large parallel corpus for DNN training. With a small 

corpus to train DNNs, a lower log spectral distortion can still be 

seen over the conventional Gaussian mixture model (GMM) 

approach, trained with the same data. With the synthesized 

parallel corpus, a speech naturalness preference score of about 

54.5% vs. 32.8% and a speech similarity preference score of 

about 52.5% vs. 23.6% are observed for the DNN-converted 

speech from the large parallel corpus when compared with the 

DNN-converted speech from the small parallel corpus. 

I. INTRODUCTION 

Voice conversion (VC) is a technology that modifies a source 

speaker’s utterance to sound like a target speaker. There are plenty of 

techniques proposed in literature to realize voice conversion, such as 

vector quantization [1], Gaussian mixture models (GMM) [2], pitch-

synchronous overlap addition [3], artificial neural network [4], and 

multiple function [5]. Among these methods, GMM is one of the 

most popular methods. However it often suffers from the low quality 

problems, such as over-smoothing [6] and over-fitting [7]. 

We believe there are two key issues need to be addressed for a 

high quality VC. First, the mapping function for transforming the 

speech features from the source to the target speakers. In contrast to 

probabilistic GMM approaches, regression [8] and classification [9-

10] based deep neural networks (DNNs) have recently attracted a lot 

of attention due to its great modeling capabilities. Besides automatic 

speech recognition it has also been adopted in voice conversion. 

Desai et al. [11] utilized a mapping function based on artificial 

neural network (ANN). Chen et al. [12-14] used restricted 

Boltzmann machine (RBM) and Bernoulli bidirectional associative 

memory to construct a global nonlinear mapping. Nakashika et al. 

[15] proposed two deep belief networks (DBNs) and an ANN for 

conversion. Xie et al. [16] trained an ANN with a sequence error 

minimization criterion for the speech features. Mohammadi et al. 

[17] proposed ANN based conversion from a deep auto-encoder. All 

these systems were usually built with a limited number of parallel 

utterances which is often too small to train a good DNN for the high-

quality voice conversion. 

The other critical issue is that the required parallel corpus is often 

not easy to construct. The widely used CMU ARCTIC corpus [18] 

has only 1132 utterances for every speaker, too small to train a high-

quality voice conversion operation. There are also some conversion 

methods using nonparallel corpora, e.g., phonetic information based 

alignment [19] and vocal tract length normalization [20]. As 

summarized in [21], the more similar the corresponding source and 

target speakers are, the less speaker-dependent information can be 

taken advantage of. 

In this paper, we propose a DNN-based voice conversion function 

which is trained on a highly-desired, large synthesized parallel 

corpus obtained with the proposed speech synthesis [22-24] and 

dynamic time warping (DTW) techniques [25]. The DNN is stacked 

with pre-trained RBMs and fine-tuned with a minimum mean square 

error (MMSE) criterion. The proposed DNNs generate a lower log 

spectral distortion (LSD) when compared with the conventional 

GMM approach with a small training data. With the large 

synthesized parallel corpus, the objective and subjective 

experimental results also demonstrate an even better performance 

over the same DNN-based conversion systems, but trained with only 

a small corpus. 

II. DNN-BASED VOICE CONVERSION 

 
The workflow of the DNN based voice conversion system is 

described in Fig. 1. DNN is used as a regression tool to construct the 

nonlinear mapping for the speech features from the source to the 

target speakers. 

DNN training is split into two steps [26]: pre-training and fine-

tuning which are shown in the left and right of Fig. 2, respectively. 

In the pre-training stage, a number of RBMs are trained with a 

contrastive convergence (CD) criterion. The input of the first layer is 

normalized with zero mean and unity variance so the pre-trained 
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Figure 1: A flow chart of DNN-based voice conversion. 
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DNN is stacked as the Gaussian-Bernoulli RBM and the rest of 

Bernoulli-Bernoulli RBMs. 

The pre-trained RBMs are next fine-tuned with the MMSE 

criterion. The input source feature is propagated as in Eq. (1) and the 

MSE is defined as the Euclidean distance between the generated and 

the original target features in Eq. (2). 

 ̂   ̃ ( (  (       )))    (1) 

where   and   are the weight matrix and bias vector,   is the 

sigmoid function,  ̃ is a linear function,   is the input speech feature 

and  ̂ is the generated target feature.  
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where   is the frame number,   is the target speech feature and  ̂ is 

the generated target speech feature. 

A stochastic gradient descent algorithm is performed in mini-

batches to update the weights in Eq. (3). The mini-batch size is set as 

256 and learning rate is set as 0.0005 in the following DNN training. 
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where   is the layer number and   is the learning rate. 

 

III. PROPOSED PARALLEL CORPUS 

In a conventional voice conversion system, some features are first 

extracted from speech waveform and then a mapping function is 

established to map the features from the source to the target speakers. 

The features usually reflect the same content and thus a parallel 

corpus is needed. Furthermore, the features should be aligned in the 

time domain due to varying lengths of the same sound uttered by 

different speakers. It is not easy to fulfill these requirements 

especially for a large parallel corpus. In the following we propose to 

construct a parallel corpus with a limited unparalleled corpus using 

speech synthesis methods with dynamic time warping based phone 

alignments. 

A. Parallel Corpus Construction 

Hidden Markov model (HMM) [27] based speech synthesis [22] 

and unit-selection based speech synthesis [23] are two prevalent 

approaches commonly used. Speech generated from HMM-based 

speech synthesis is flexible, but with a smooth quality while speech 

generated from unit-selection based speech synthesis is not as 

smooth but exhibiting a higher quality. These two methods will be 

both adopted and a series of comparison experiments will be carried 

out in Section 4. 

In HMM-based speech synthesis, two systems should first be built 

with the limited unparalleled data for the source and the target 

speakers. The correlation between text information and the speech 

features, such as duration, spectral parameter and fundamental 

frequency (F0), is constructed by decision trees with a maximum 

likelihood (ML) criterion at the HMM state level. In the synthesis 

stage, the input text is transmitted to label sequences which are then 

put into the decision trees to find the corresponding state-level 

duration, spectrum and F0 parameters. The speech features are then 

generated with the ML parametric generation (MLPG) algorithm 

[28] from the corresponding GMMs in Eq. (4), 

  (   ̂ )
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where   is the window matrix including dynamic features,  ̂ is the 

covariance matrix and  ̂ is the mean vector. 

In unit-selection based speech synthesis, we adopted our previous 

proposed method called hybrid speech synthesis [24] to construct the 

parallel corpus. The proposed technique can generate speech with a 

mean opinion score (MOS) of 3.8 and get a higher preference score 

over the traditional hybrid speech synthesis systems. 

Here the generated speech is directly selected from the original 

corpus according to the maximum likelihood criterion. Assuming a 

sentence contains   syllables, (          ) , then   
  and   

  are 

defined as the trained initial and final models for every Mandarin 

syllable. The corresponding speech,    (                ) , for 

the     syllable is also split into     
  and     

  for the initial and final. 

So the likelihood of the candidate for the      syllable is defined as 

follows: 
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where   
  and   

  stand for the state allocations.   
     

 and   
     

 are 

the duration models.    
  and   

  are the frame numbers. 

The optimal syllable sequence    is then solved as follows:  

          ∑   (     )
 
      (8) 

Searching is expanded into a two-dimension space. One is the 

syllable sequence and the other is the candidates for every syllable. It 

can be realized by dynamic programming. Before that, the cost in Eq. 

(5) is converted into the traditional form of a sum of “target cost” 

and “concatenation cost” as follows: 

          *∑   (  )
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   + (9) 

where   (  )  indicates the weighted sum of likelihood in    

from the second frame to last but one frame, and   (       ) 
calculates the sum of likelihood of the last frame in      and the first 

frame in   . 

B. Features Alignment 

DTW is used in most typical utterance alignment algorithm. Speech 

features are aligned in a minimum distance constraint through a 

Viterbi search algorithm. The result of DTW depends on the distance 

measure and is sensitive to noise. However, the aligned result is very 

vital to train the mapping function. So we adopt a reliable alignment 

method described below. 

In the parallel corpus constructed in the speech synthesis methods, 

the source and the target speakers utter the same text which means 

the two corresponding phone sequences are expected to be the same. 

The uttered phone lengths can get from the speech synthesis methods 

directly. For example, the phone’s duration from the HMM-based 

speech synthesis is decided by the decision tree and the phone’s 

duration from hybrid speech synthesis can then be obtained from 

phone segmentation of the original corpus. The alignment between 

the source and the target speakers can be done by interpolating the 

Figure 2: Pre-training and fine-tuning with stacked RBMs. 
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target speaker’s speech feature to the same length as the source 

speaker for every phone considered. 

IV. EXPERIMENTS AND DISCUSSION 

In this section, the effectiveness of the proposed techniques for voice 

conversion is evaluated. Detail about the experiments is described in 

Section 4.1. The proposed DNN-based voice conversion system is 

set up in Section 4.2. Then in Section 4.3, DNN-based VC is 

compared with GMM-based VC with the same training data. The 

effectiveness of the proposed VC with the synthesized corpus is 

evaluated in Section 4.4. 

A. Experiment Setup 

The parallel corpora used in the following experiments were from 

a female talker and a male talker both speaking Mandarin with the 

same content for about three hours. And the rest of the unparalleled 

sentences were about four hours. The speech parameters used in 

these experiments were line spectral pair (LSP) [29] with dynamic 

features as the spectral parameters which were extracted from the 

STRAIGHT spectrum [30] and logarithmic fundamental frequency 

(LF0) as the excitation parameter. In synthesis stage, maximum 

likelihood parametric generation (MLPG) [28] algorithm is adopted 

to generate speech parameters with the dynamic features. Most of the 

speaker’s characteristics have been included in the spectrum, so in 

this study we only considered the LSP conversion from the source 

speaker to the target speaker. The LF0 conversion was realized in the 

following equation, 

     (         ̅̅ ̅̅ ̅̅ )  
    

    
     ̅̅ ̅̅ ̅̅ ̅   (10) 

where     ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅ are the LF0’s mean of the source speaker and 

target speaker, respectively.     and      are the       variance of 

the source speaker and target speaker, respectively.      and      

are the input source and the converted target speaker’s LF0. 

The quality of the converted speech was verified through log 

spectral distortion (LSD in dB) [31] and ABX preference tests [32] 

in naturalness and similarity. In the ABX preference tests, listeners 

will be asked to listen to two versions of converted speech and 

choose one which sounds much better than the other in the 

naturalness tests or much closer to the original speech in the 

similarity tests. The better one will get a preference score of “1” or 

no preference (N/P) score of “1”. The final scores were calculated by 

the mean value of the scores given by the listeners in our lab. Fifteen 

native speakers, who had previously undergone listening tests in our 

lab, took part in our experiments and listened to about twenty 

sentences for every converted method. 

B. Preliminary DNN Experiments 

The first type of DNN was trained with the existing parallel 

corpus of 3 hours without using any synthesis. This network 

contained four hidden layers with 1024 units. The input and the 

output formed a pair of the source and target speaker’s LSPs. The 

DNNs (DNN-0 … DNN-10) trained with different window lengths 

of contextual information [22] were compared in Fig. 3 and Table 1, 

where DNN-0 contains only one frame and DNN-10 contains one 

central frame with 10 left and 10 right frames. It shows that the LSD 

between the generated and the target spectra decreases as the context 

window length increases. When the window length is beyond 3, the 

LSD decreases very slowly and stops improving after the window 

length of 6. So considering the computing complexity and quality, 

the window length for contextual information was fixed at 6 for all 

the following series of experiments. An ABX preference test of 

naturalness was conducted to confirm the effectiveness of the LSD 

measure for describing the synthesized speech’s quality. The 

experimental result in Table 1 declares a clear improvement of 

increasing the window length from a shorter DNN-0 with a 0.145 

score to a longer DNN-6 with a 0.812 score. The third column of 

0.043 is the no preference score. 

 

 

C. Comparison with GMM-based Method 

A GMM-based voice conversion system [6] was trained on the 

existing parallel corpus and 2047 GMMs were kept for the 

conversion. To enhance the synthesized speech’s quality, the global 

variance (GV) of frequency domain delta LSP [33] was trained for 

overcoming the over-smoothing problem. 

The comparison results are listed in Tables 2 and 3. The scores on 

naturalness declare a clear preference of DNN-6 with 47.8% over 

GMM with 9.7%. As for the similarity preference scores, the 

difference between DNN-6 (at 32.3%) and GMM (at 6.8%) is also 

significant. LSD in Table 3 also gives DNN-6 a 0.117 dB advantage 

over GMM. It can be concluded that the proposed DNN-based 

approach is much better than the GMM-based methods in voice 

conversion. 

 

 
We believe there are two key reasons: (1) DNN’s great nonlinear 

approximation power, and (2) easy incorporation of contextual 

information in DNN. When the window length sets as 0 as shown in 

Fig. 3 and Table 3, the LSD between DNN-0 and GMM is actually 

very small. But when the window length increases, the discrepancies 

between these two methods become obvious. 

 

Figure 3: Log spectral distortion (LSD) with different 

window lengths for contextual information. 

Table 1: Naturalness preference score with a 0.05 confidence 

interval comparison converted between DNN-0 and DNN-6 

System DNN-0 DNN-6 N/P 

Naturalness Preference 0.145 0.812 0.043 

 

Table 2: Preference scores between the converted speech from 

the DNN-6 and GMM with a 0.05 confidence interval  

 DNN-6 GMM N/P 

Naturalness 0.478 0.097 0.425 

Similarity 0.323 0.068 0.609 

 
Table 3: LSDs between the natural speech and converted speech 

by the DNN-6 and GMM 

Methods LSD in dB 

GMM 4.764 

DNN-6 4.647 

 



D. Experiments based on Synthesized Large Corpora 

The second type of VC DNN, in contrast to the one discussed in 

Section 4.2, was trained with 50 hours of enlarged parallel data using 

the proposed synthesis framework discussed in Section 3. Two 

parallel corpora, one generated from HMM-based (Corpus1) and the 

other from hybrid synthesis (Corpus2), were produced. 

First, the two synthesis methods were compared in LSD in Table 

4. Speech generated from the HMM-based synthesis method takes 

smaller LSD than that in hybrid speech synthesis. We believe it is 

mainly attributed to the flexibility of HMM-based synthesis. For 

example, the duration for every Mandarin syllable is much easier to 

control in HMM-generated speech. On the other hand the desired 

lengths are modified a great deal in hybrid speech synthesis resulting 

in higher LSD as shown in Table 4. 

Next, two DNN-based nonlinear voice conversion functions from 

one female speaker to another male speaker were trained with the 

two abovementioned enlarged parallel corpora using our proposed 

VC technique discussed in Section 2. These DNNs took six hidden 

layers with 2048 nodes in each hidden layer. The VC-generated 

speech signals with the two synthesized corpora were compared for 

voice conversion in Table 5, which is one of our main interests in 

this study. As seen, Corpus1-DNN’s 4.79 dB in LSD declares a clear 

advantage over Corpus2-DNN’s 5.91 dB in the converted speech’s 

spectra. It is consistent with the result listed in Table 4. The other 

comparison in Table 5 is that the LSDs for Corpus1-DNN and 

Corpus2-DNN were larger than the LSD for DNN-6. This is also in 

line with our expectation with that speech used for training DNN-6 

was the original not the synthesized signals used in obtaining 

Corpus1-DNN and Corpus2-DNN. 

Finally, voice converted speech was evaluated in another set of 

ABX tests for the Corpus-1 based VC system which showed lower 

LSD in Table 5 than that for Corpus-2 based VC. The preference 

scores on naturalness and similarity listed in Table 6 mean that 

converted speech from the synthesized large corpora (Corpus-1), 

although with larger LSD in Table 5, is much preferred to VC based 

speech generated from the small corpus (DNN-6). For example, for 

the similarity scores listed in the bottom row in Table 6, we can see 

the effectiveness of the proposed technique in voice conversion with 

a large synthesized parallel corpus could be confirmed at 52.5% of 

the time when compared with the VC system at a score of 0.236 

obtained with a smaller parallel corpus but with natural speech. We 

believe more research is needed. 

 

 
 

 

 

V. CONCLUSION AND FUTURE WORK 

We propose a DNN-based voice conversion framework. Hybrid 

speech synthesis method and HMM based speech synthesis method 

are used to synthesize the large parallel corpora needed for DNN 

training to improve the quality of converted speech. Utterances from 

these corpora are phone-aligned with dynamic time warping to 

facilitate the nonlinear mapping required in DNN training. The 

experimental results show that speech converted by the proposed 

DNN-based approach takes a lower log spectrum distortion than the 

GMM-based method and the preference scores also declare a clear 

DNN advantage in listening tests. Meanwhile improved preference 

scores are obtained when more synthesized parallel corpora are 

incorporated. 

In future work, we would investigate the issue of how big an 

original speech corpus size is needed in order to generate a usable 

parallel corpus for DNN-based voice conversion. The current size of 

three hours is too big in practice. We would also attempt to use the 

proposed DNN-based VC technique to speaker adaptation and to 

mimic a speaker’s individuality in speech synthesis. ASR-based 

classification techniques could also be utilized in training DNNs. 

ACKNOWLEDGMENT 

This work is supported by the National Natural Science 

Foundation of China (NSFC) (No.61403386, No.61273288, 

No.61233009, No.61203258, No.61305003, No. 61332017, 

No.61375027), and the Major Program for the National Social 

Science Fund of China (13&ZD189). 

REFERENCES 

[1]  [1] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, 

“Voice conversion through vector quantization,” J. Acoust. Soc. 

Japan. (E), vol. 11, no.2, pp. 71–76, 1990. 

[2] [2] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous 

probabilistic transform for voice conversion,” IEEE Trans. 

Speech Audio Process., vol. 6, no. 2, pp. 131–142, Mar. 1998. 

[3] [3]H. Valbret, E. Moulines, and J. P. Tubach, “Voice 

transformation using PSOLA technique,” Speech 

Communication, vol. 11, no. 2–3, pp. 175–187, 1992. 

[4] [4] M. Narendranath, H. A. Murthy, S. Rajendran, and B. 

Yegnanarayana, “Transformation of formants for voice 

conversion using artificial neural networks,” Speech 

Communication, vol. 16, no. 2, pp. 207–216, 1995. 

[5] [5] N. Iwahashi and Y. Sagisaka, “Speech spectrum conversion 

based on speaker interpolation and multi-functional 

representation withweighting by radial basis function 

networks,” Speech Communication, vol. 16, no. 2, pp. 139–151, 

1995. 

[6] [6] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion 

based on maximum likelihood estimation of spectral parameter 

trajectory,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, 

no. 8, pp. 2222–2235, Nov. 2007. 

Table 4: LSDs between the natural speech and synthesized 

speech by HMM-based speech synthesis method and hybrid 

speech synthesis method 

Methods LSD in dB 

HMM-based speech synthesis 5.01 

Hybrid speech synthesis 5.64 

 

Table 5: LSDs between the natural speech and converted speech 

by the DNN-6, Corpus1-DNN and Corpus2-DNN 

Methods LSD in dB 

DNN-6 4.65 

Corpus1-DNN 4.79 

Corpus2-DNN 5.91 

 

Table 6: Preference comparisons between the converted speech 

with Corpus1-DNN and DNN-6 with a 0.05 confidence interval  

 Corpus1-DNN DNN-6 N/P 

Naturalness 0.545 0.328 0.127 

Similarity 0.525 0.236 0.239 

 



[7] [7] E. Helander, T. Virtanen, J. Nurminen, and M. Gabbouj, 

"Voice conversion using partial least squares regression," IEEE 

Transactions on Audio, Speech, and Language Processing, vol. 

18, no. 5,pp. 912-921, 2010. 

[8] [8] Y. Xu, J. Du, L.-R. Dai and C.-H. Lee, “A Regression 

Approach to Speech Enhancement Based on Deep Neural 

Networks,” IEEE Trans. Audio, Speech and Language Proc., 

Vol. 23, No. 1, pp. 7-19, January 2015. 

[9] [9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the 

dimensionality of data with neural networks,” Science, vol. 313, 

no. 5786, pp. 504–507, 2006. 

[10] [10] G. E. Hinton, L. Deng, D. Yu, and G. E. Dahl, “Deep 

neural networks for acoustic modeling in speech recognition: 

The shared views of four research groups,” IEEE Signal Process. 

Magazine, vol. 29, no. 6, pp. 82–97, 2012. 

[11] [11] S. Desai, A. W. Black, B. Yegnanarayana, “Spectrum 

Mapping Using Artificial Neural Networks for Voice 

Conversion,” IEEE Trans. Audio, Speech, Lang. Process, vol. 

18, No. 5, July 2010. 

[12] [12] L. H. Chen, Z. H. Ling, Y. Song, L. R. Dai, “Joint Spectral 

Distribution Modeling Using Restricted Boltzmann Machines 

for Voice Conversion,” in Proc. Interspeech, pp. 3052-3056, 

2013. 

[13] [13]L. H. Chen, Z. H. Ling, and L. R. Dai,“Voice Conversion 

Using Generative Trained Deep Neural Networks with Multiple 

Frame Spectral Envelopes,” Proc. Interspeech, pp. 2313-2317, 

2014. 

[14] [14] L. H. Chen, Z. H. Ling, L. J. Liu, L. R. Dai, "Voice 

Conversion Using Deep Neural Networks With Layer-Wise 

Generative Training," IEEE/ACM Transactions on Audio, 

Speech, and Language Proc, vol.22, no.12, pp.1859--1872, Dec. 

2014. 

[15] [15]T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki, 

“Voice Conversion in high-order eigen space using deep belief 

nets,” Proc. Interspeech, pp. 369-372, 2013. 

[16] [16] F. L. Xie, Y. Qian, Y. Fan, F. K. Song and H. Li, 

“Sequence Error (SE) Minimization Training of Neural 

Network for Voice Conversion,” in Proc. Interspeech, pp. 2283-

2287, 2014.  

[17] [17] S. H. Mohammadi, A. Kain, "Voice conversion using deep 

neural networks with speaker-independent pre-training," IEEE 

Spoken Language Technology Workshop, pp.19--23, Dec. 2014 

[18] [18] J. Kominek and A. Black, “The CMU ARCTIC databases 

for speech synthesis,” Tech. Report CMU-LTI-03-177, 

Language Technologies Institute, Carnegie Mellon University, 

2003. 

[19] [19] J. Tao, M. Zhang, J. Nurminen, J. Tian, and X. Wang, 

“Supervisory data alignment for text-independent voice 

conversion,” IEEE Transactions on Audio, Speech, and 

Language Processing, vol. 18, no. 5, pp. 932–943, 2010. 

[20] [20] D. Suendermann, H. Ney, and H. Hoege, “VTLN-Based 

cross-language voice conversion,” Proc. ASRU’03, Virgin 

Islands, 2003. 

[21] [21] D. Sundermann, H. Hoge, A. Bonafonte, H. Ney, and J. 

Hirschberg, "Text-independent cross-language voice 

conversion," Proc. ICSLP, 2006. 

[22] [22] H. Zen, K. Tokuda, and A. Black, "Statistical Parametric 

Speech Synthesis," Speech Communication, 51(11), 1039-1064. 

[23] [23] A. J. Hunt and A. W. Black, "Unit selection in a 

concatenative speech synthesis system using a large speech 

database," Proc. ICASSP, pp. 373-376, 1996. 

[24] [24] R. Zhang, J.-H. Tao, Y. Li and Z.-Q. Wen, "A novel hybrid 

mandarin speech synthesis system using different base units for 

model training and concatenation," Proc. ICASSP, pp. 295-299, 

2014. 

[25] [25] C. S. Myers, and L. R. Rabiner, "A comparative study of 

several dynamic time-warping algorithms for connected word 

recognition," The Bell System Technical Journal, 60(7):1389-

1409, September 1981. 

[26] [26] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning 

Algorithm for Deep Belief Nets”, Neural Computation, vol. 18, 

pp. 1527-1554, 2006. 

[27] [27] L. R. Rabiner, "A Tutorial on Hidden Markov Models and 

Selected Applications in Speech Recognition," Proc. IEEE, 77 

(2), pp. 257-286, Feb. 1989.  

[28] [28] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. 

Kitamura, "Speech parameter generation algorithms for HMM-

based speech synthesis," Proc. ICASSP, pp.1315-1318, June 

2000. 

[29] [29] F. K. Soong, and B.-H. Juang, "Line spectrum pair (UP) 

and speech data compression", Proc. ICASSP, San Diego, Vol.1, 

pp. 1.10.1-1.10.4, May 1984. 

[30] [30] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné, 

"Restructuring speech representations using a pitch-adaptive 

time-frequency smoothing and an instantaneous-frequency-

based F0 extraction: Possible role of a repetitive structure in 

sounds,” Speech Communication, 27(5), 187–207, 1999. 

[31] [31] Y. Ephraim and D. Malah, “Speech Enhancement using a 

Minimum Mean-Square Error Log-Spectral Amplitude 

Estimator,” IEEE Trans. Acoust., Speech, Signal Processing, 

Vol. ASSP-33, No. 2, pp. 443-445, 1985. 

[32] [32] L. Blin, O. Boeffard and V. Barreaud, “WEB-based 

listening test system for speech synthesis and speech conversion 

evaluation,” Proc. LREC (Marrakech (Morocco)), 2008.  

[33] [33] S.-F. Pan, Y. Nankaku, K. Tokuda and J.-H. Tao, "Global 

variance modeling on frequency domain delta LSP for HMM-

based speech synthesis," Proc. ICASSP, pp.4716-4719, 2011. 


