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Abstract—We propose two simple methods to improve the
performance of a keyword spotting system. In our application,
the users are allowed to change the keywords anytime if they
want. Thus we focused on phone-based GMM-HMM models since
they do not require keyword-specific training data. However, the
GMM-HMM based models usually have very high false alarm
rate, i.e., a keyword is not present but the system gives a positive
decision. We found that we can utilize the uncertainty of the
system when a non-keyword is presented. Two simple methods
are proposed to incorporate the uncertainty into the confidence
measure. Our experiments show that these two methods can
substantially reduce the false alarm rate from 75.05% to 5.71%.
Meanwhile, the false reject rate increases from 1.04% to 5.71%.

Keyword: keyword spotting, confidence assessment, GMM,
HMM

I. INTRODUCTION

Keyword spotting (KWS) is a key component to enable fully
hands-free speech understanding experience. It continuously
listens to the speech to detect pre-defined keywords to initiate
voice input. Since it is designed to be running all the time,
the CPU and memory requirements by KWS should be very
small.

Some researchers [1], [2], [3] proposed to use a Large
Vocabulary Continuous Speech Recognition (LVCSR) system
to firstly decode the input speech to generate rich lattices.
The output lattices are then searched to detect the presence of
pre-defined keywords. Since LVCSR requires a lot of memory
and computation, this method is usually used for offline audio
indexing and searching.

In recent years, Deep Neural Networks (DNNs) have
achieved tremendous success in many machine learning tasks,
including speech recognition. Several KWS systems based on
DNNs have been proposed. Chen et al. [4] proposed to use
DNNs for small-footprint keyword spotting. More advanced
models such as Convolutional Neural Networks (CNNs[5])
or Recurrent Neural Networks (RNNs[6], [7]) have recently
been proposed to improve the performance. A neural network
is trained using keyword specific data to directly predict
the keyword(s). Neural Networks (NNs) based methods have
greatly improved the performance of KWS system. However,
NN-based methods usually need a large amount of keyword
specific training data which is very expensive. For example,
about 40K training examples of “okay google” were used to
train the models in [4]. In addition, new training data need to

be collected to re-train the models if the pre-defined keywords
are changed.

Another commonly used technique for KWS is the Key-
word/Garbage model [8], [9]. A Hidden Markov Model (HM-
M) is constructed for each keyword. In addition, garbage (or
filler) HMMs are constructed to represent all non-keywords.
At runtime, a Viterbi decoding is used to find the best path
that explains the input speech. A KWS system based on Key-
word/Garbage model usually has very low false reject rates.
However, the false alarm rates are usually very high, since the
garbage model can hardly represents all non-keywords. Zhang
et al. [8] proposed to use confusion garbage models to partially
solve this problem. Similar pronunciations with pre-defined
keywords are carefully selected to join the garbage model to
reduce false alarm rate. In this paper, we propose two simple
methods to deal with this problem based on phenomenons that
we observed in our experiments. If non-keyword speech is fed
into the system based on Keyword/Garbage model, usually
the decoder is uncertain during decoding, though it might
finally reluctantly converge to a certain path that represents
a keyword.

The rest of this paper is organized as follows. In Section
2, we describe the methodology. The experimental setup and
results are presented in Section 3. Conclusions are presented
in Section 4.

II. METHODOLOGY

As explained above, we focus on keyword/garbage models
in this paper. During decoding, we used the token passing
algorithm [10]. Therefore, we will firstly introduce the Key-
word/Garbage models, followed by the token passing algorith-
m. Then we will go on to describe our methodologies.

A. Keyword/Garbage Models

The main problem with keyword spotting is to substantially
reduce the false alarm rate (a keyword is not present but the
system gives a positive respond) while maintaining very high
recognition accuracy at the same time. One way to deal with
this problem is to use Keyword/Garbage models [9]. The idea
is to absorb all out-of-vocabulary words into the garbage (also
called filler) models.

As shown in Fig. 1, the keyword/garbage models consist of
multiple path representing the keywords, and a single (as in
our experiment) or multiple path (as in [8]) representing the



Fig. 1. The keyword/garbage model with a single garbage path.

Fig. 2. The structure of the constructed HMM of the keyword/garbage model.

garbage model(s). Usually, the garbage models were simply
trained by using all non-keyword speech. A simple decoder
will simply find the best path that can best explain the
input speech. However, the resulting false alarm rates are still
very high since the garbage models cannot represent all non-
keywords.

B. Token passing algorithm

The constructed keyword/garbage model is indeed a finite
state network as shown in Fig. 2. The decoding algorithm
we used to find the best path is the token passing algorithm
[10]. Let K be the number of paths and Nk be the number of
nodes in the kth path. As can be seen from Fig. 2, there is a
transition cost akij (i.e. the negative of the logarithm of the
transition probability pkij of the hidden Markov models in the
kth path) associated with each pair of connected states i and
j in the kth path. There is also a local cost bkj (ot) associated
with each state (i.e. the negative of the logarithm of the state
output probability pkj (ot) in the kth path).

Each state of the finite state network is able of holding a
moveable token. At time t, the token in state kj holds the
value skj (ot) that is the minimum cost alignment between the
segment o1 · · · ot of the input speech features and the model
starting in state 0 and ending in state kj, i.e.

skj (ot) = min
i
{ski (ot−1) + aij}+ bkj (ot) (1)

For each input speech frame, the tokens will move one step
forward to all connecting states. After all the speech has been
fed into the decoder, the decoding algorithm examines the
final state, finds the token with the smallest skj (ot) value, and
finally outputs k as the spotted results. k can represent a valid
keyword path or a garbage path. For the details of the token

passing algorithm, we refer the readers to [10]. We will call
the output path k as the decoded path in the following section.

C. Degree of match

Our preliminary experiments with the above methods show
that the false reject rate(i.e. a keyword is present but the system
give negative respond) is very low, but the false alarm rate is
too high to be used in a real system. An option is to add more
garbage models into the system. But this will substantially
increase the model complexity and thus requires much more
computation and memory. By utilizing the uncertainty of the
decoder when non-keyword speech is fed into the decoder,
we can substantially reduce the false alarm rate, but (almost)
without increasing the computation and memory requirement.

Our first method, which we call it “degree of match (DM)”,
is based on the following phenomenon. We fount that if the
input speech is indeed a keyword, for each input speech frame
ot, the best node (i.e. the node with the smallest bkj (ot)) usual-
ly comes from the decoded path. However, if the input speech
is a non-keyword, the best nodes for different input frames
usually comes from different paths. Lets denote bdec(ot) as the
best node on the decoded path that explains ot (i.e. the node
on the decoded path with smallest bkj (ot), j = 1, 2, · · · , Nk),
and bg(ot) as the global optimal node for ot (i.e. the node
with smallest bkj (ot), k = 1, 2, · · · ,K, j = 1, 2, · · · , Nk). Fig.
3 shows the histogram of the difference between bdec(ot) and
bg(ot) if a keyword is present. Fig. 4 shows the histogram of
the difference between bdec(ot) and bg(ot) if a non-keyword
is present.
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Fig. 3. The histogram of the difference between bdec(ot) and bg(ot) if a
keyword is present.

The proposed DM tries to utilize the above information
in the decoding in order to reduce the false alarm rate. To
illustrate the strategy of DM, lets firstly define the following
variables:

bk(ot) = min
j

{bkj (ot)}, j = 1, 2, · · · , Nk

bg(ot) = min
k

{bk(ot)}, k = 1, 2, · · · ,K

mk
t =

{
mk

t−1 + 1, bk(Ot) > bg(ot) + d

mk
t−1, else

mk
0 = 0

(2)
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Fig. 4. The histogram of the difference between bdec(ot) and bg(ot) if a
non-keyword is present.

In other words, mk
t denotes the number of times that the best

node (with a tolerance defined by d) does not comes from
the kth path. Every time the token passing algorithm finishes
the decoding and finds the best path k∗, the DM strategy
will further check mk∗

T to determine the final result using the
following mechanism{

output k∗, mk∗

T /T < thrddm

non− keyword, else
(3)

where thrddm is another hyper parameter. Note that the DM
strategy can be used together with the keyword/garbage model.
Thus if the output path k∗ represents a garbage model, the
output is still a non-keyword.

D. Degree of stability

Our second strategy, which is called “degree of stability
(DS)”, tries to explore the stability of the global optimal path
in order to reduce the false alarm rate. Lets define sk(ot) =
min
j

{skj (ot)}, j = 1, 2, · · · , Nk. We found that if a keyword is

indeed present, the global optimal path (i.e. the path with the
token that has the smallest skj (ot)) quickly converges to the
correct one, as shown in fig. 5. If a non-keyword is present,
the best token (i.e. the token with the smallest skj (ot) globally)
usually comes from different paths at different time, as shown
in fig. 6.
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Fig. 5. sk(ot) of different paths increase with t increases. The global optimal
path quickly converges to the correct one if a keyword is indeed present.
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Fig. 6. sk(ot) of different paths increase with t increases. The global optimal
path hardly converges if a non-keyword is present.

The proposed DS method utilize the above information to
reduce the false alarm rate. Let

sk(ot) = min
j

{skj (ot)}, j = 1, 2, · · · , Nk

s−k(ot) = min
m

{sm(ot)},m = 1, 2, · · · ,K and j ̸= k

ykt = ykt−1 + |sk(ot)− s−k(ot)| ∗ ω
yk0 = 0

(4)

where ω is a hyper parameter. As with the DM strategy,
every time the token passing algorithm finishes the decoding
and finds the best path k∗, the DS strategy will further
check yk

∗

T to determine the final result using the following
mechanism{

output k∗, yk
∗

T /T < thrdds

non− keyword, else
(5)

where thrdds is another hyper parameter.

III. EXPERIMENTS AND RESULTS

A. Data

We used a corpus of about 1600 hours of transcribed Man-
darin speech as the training data. The KWS system was then
evaluated on another separate data set, which was recorded
from 20 speakers (10 male speakers and 10 female speakers).
The evaluating data set contains 2000 utterances, where 1000
of them consist of 10 keywords and the other 1000 utterances
are non-keywords. We further divided the evaluating data set
into a development set (10%) and a testing set (90%). The
number of utterances in both the development and testing
data sets for different classes of keywords/non-keywords is
balanced.

B. Experimental Setup

Mel Frequency Cepstrum Coefficient(MFCC)[11] was used
as the features. Triphone models based on decision-tree tying
were trained by using all the training data. The same data (i.e.
all the training data) were then used again to train the garbage
model, a hidden Markov model (HMM) with 3 hidden states.
To restrict the computation and memory usage, we did not use
a lot of Gaussian component for each HMM state. Specifically,



we used 24 Gaussian components for each state of all the
HMMs. We then used the trained models to construct a finite
state network similar to the one shown in Fig. 2.

To evaluate the effectiveness of the proposed methods, we
compared the following KWS systems in our experiments. 1)
A KWS system with only the garbage models (GM). 2) A
KWS system with the garbage models and the proposed DM
method (GM+DM). 3) A KWS system with the garbage mod-
els and the proposed DS method (GM +DS). 4) A KWS system
with only the proposed DM and DS methods (DM+DS). 5) A
KWS system with the garbage models, the proposed DM and
DS methods (GM+DM+DS).

We used the Equal Error Rate (EER) as the evaluation
criteria.

C. Experimental Results

The equal error rates of different models are shown in
Table 1. When we only used the garbage models (GM), the
false reject rate (FRR) of the system is only 1.04%, but the
false alarm rate (FAR) is as high as 75.05%. Therefore, KWS
system based only on the garbage models can hardly be used
in real application. Since the KWS system with the garbage
model does not have any hyper parameters to tune to get the
EER. We did not include its EER in Table 1.

TABLE I
THE EER OF DIFFERENT SYSTEMS EVALUATED IN

THIS PAPER.

Methods EER
GM+DM 16.94%
GM+DS 12.82%
DS+DM 7.81%
GM+DS+DM 5.71%

From Table 1, we can also see that both the DM and DS
methods can help substantially reduce the EER. Even a system
with only the DM and DS methods (i.e. without garbage
model) can achieve the EER of 7.81%. Combing the GM,
DS and DM achieve the best result.

The FFR-FAR curve of the KWS system with GM+DM+DS
is plotted in Fig. 7. We can tune the parameters to meet the
requirements of different applications.
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Fig. 7. The FFR-FAR curve of the GM+DS+DM system.

We haven’t collect enough data to train dedicated DNNs to
compare with the methods proposed in this paper. From their

FFR-FAR curve in [4], we estimate that the EER is about
4.5% which is slightly better than our methods. However, our
methods do not require a large number of keyword specific
data to train the DNNs (e.g. about 40k number of utterances
of “okay google” were used to train the DNNs). The users can
easily change the keywords according to their own habit.

IV. CONCLUSIONS

In this paper, we present two new methods to substantially
reduce the false alarm rate of a keyword spotting system
based on the keyword/garbage models. The proposed methods
are based on the observed uncertainty during decoding when
non-keywords are present to the system. The experiments
demonstrate the effectiveness of the proposed methods.
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