
Shape-Adaptive Image Compression Using Lossy 
Shape Coding, SA-Prediction, and SA-Deblocking 

Li-Ang Chen 1, Jian-Jiun Ding 2, and Yih-Cherng Lee 3 
Graduate Institute of Communication Engineering, 

National Taiwan University, Taipei, Taiwan 
E-mail: r03942036@ntu.edu.tw 1, jjding@ntu.edu.tw 2, mailappserver@gmail.com 3,  Tel: +886-2-33669652 

 
 

Abstract— As the annoying blocking or ghost artifacts tend to 
appear in the conventional compression approaches either in the 
JPEG or JPEG2000 standards at low bitrate, the concept of the 
object-oriented image compression is proposed. This kind of 
methods is able to retain the image structural boundaries and 
therefore has relatively good visual qualities even in high 
compression ratios. In this paper, we propose a shape-adaptive 
image compression scheme employing an efficient lossy contour 
compression algorithm to encode the region information, which 
is usually the main overhead data in such systems. In addition, 
the prediction and deblocking techniques commonly used in 
novel compression approaches are also applied with the 
proposed shape-adaptive versions. Simulation results suggest 
that the proposed compression system is able to provide 
compressed images with much better visual qualities and more 
reasonable degradation forms compared to other prevailing 
methods. 

I. INTRODUCTION 

Efficiencies of compression techniques become more 
important due to the increasing amount of multimedia 
contents like images and videos on social network nowadays. 
The JPEG [1] and JPEG2000 [2] are classic and still 
commonly used image compression standards. The JPEG 
employs block partitioning and discrete cosine transform 
(DCT) while the JPEG2000 apply the discrete wavelet 
transform (DWT). However, in low bitrate scenarios, there 
will be blocking artifacts in the JPEG and ghost and ringing 
artifacts in the JPEG2000. These degradations are annoying 
and unpleasant to human visual system (HVS). Even the 
recent H.264/AVC intra-coding [5][6] and the advanced 
image coding (AIC) [7] suffer from the blocking artifacts as 
well since the whole systems are also block-based.  

As a result, the concept of the shape-/object-oriented image 
compression was proposed. The target image is segmented 
into regions with different attributes before the compression. 
Then, each region are processed separately to utilize image 
regional properties and maintain visual qualities. In the 
MPEG-4 video coding standard [3][4], the object or region-
of-interest (ROI) region can be encoded separately from the 
background or non-ROI region. To process arbitrary shape 
image patch, the shape-adaptive DCT (SA-DCT) was 
proposed in [8]. In [11], Ding et al. propose a pseudo shape-
adaptive approach by partitioning the image regions into 
triangles and trapezoids. The graph-based image compression 
method in [12] view the segmentation results as a graph and 
apply Fourier graph transform (FGT) to replace the 

orthogonal transforms like DCT or integer transform in the 
H.264/AVC standard. 

Generally, besides the image segmentation in the first place, 
the shape-adaptive compression scheme can be divided into 
two phases: region/shape coding and region-wise compression. 
In the proposed method, the following key techniques are 
used. 

Lossy shape coding: instead of record the segmentation 
results without any loss, we suggest to encode these boundary 
information with tolerable error to eliminate unnecessary 
noises using an efficient contour compression algorithm. In 
addition, a refinement technique to mend the potential 
overlapping and empty pixels is proposed. Fig. 1 (a) and (b) 
show the approximated and encoded results. 

Shape-adaptive image prediction: we modify the image 
prediction scheme that is commonly employed in novel image 
compression system to be shape-adaptive usage. The 
proposed version can provide better prediction due to region-
wise processing as depicted in Fig. 6. 

(a)                                             (b) 

(c)                                             (d) 
Fig.1   (a) The original regions (20598 bits using the chain 
code). (b) The approximated regions (4926 bits). (c) The 
compressed image under 2 bpp. (d) The compressed image 
under 1 bpp 



Usage of the PO-SA-DCT: although the pseudo-
orthonormal SA-DCT (PO-SA-DCT) are regarded as an 
imperfect transform for its possibility to suffer from the mean 
weighting defect, we find it more efficient than other 
commonly used forms of the SA-DCTs while processing the 
prediction residues. 

Shape-adaptive deblocking: in order to reduce the 
discontinuity caused by block-partitioning in high 
compression ratios, we propose a shape-adaptive deblocking 
process based on the in-loop deblocking filter. This technique 
allows the compressed image remain smooth region-wisely in 
low bitrates. Fig. 1 (c) and (d) provide the compressed images 
from the proposed method in 2 and 1 bpp (bit per pixel) cases. 

This paper is organized as follows. In section II, some 
related works of shape-adaptive compression methods are 
discussed. The proposed method and techniques are describe 
in section III. Simulation results and performance analysis are 
provided in section IV. Finally, the conclusion comes in 
section V. 

II. RELATED WORK 

Fig. 2 shows the proposed framework of the shape-adaptive 
image compression system. Among these phases, the main 
step of large varieties is the shape-adaptive transform coding 
for arbitrarily shaped patches or blocks.  

Between irregular and square blocks, Ding et al. in [11] 
proposes a DCT expansion method based on trapezoidal and 
triangular blocks. For a given triangle or trapezoid block, we 
are able to compose a corresponding rectangle by mirroring 
against its hypotenuse. As a result, the orthogonal DCT bases 
Bp,q can be calculated efficiently from the DCT bases of the 
rectangle as in (2). Equation (1) is the DCT bases for 
rectangles of the size M by N. The obtained orthogonal bases 
for trapezoidal and triangular blocks are then used to calculate 
the corresponding DCT coefficients. 
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where p and q are the indices of the DCT bases, m and n 
denote the indices inside each basis, and M and N are the 
height and width of the rectangle. 

In [12], Fracastoro et al. suggest a graph-based 
compression approach. After the segmentation, instead of 
further partitioning each region into blocks, they view pixels 
in a region Li as a connected graph G(L, E) with pixels as 
vertices, pixel connectivity as edges, and color differences as 
edge weights. By performing the eigen value decomposition 
on the Laplacian matrix of the graph (3), the graph Fourier 
transform can be committed by (4). As a result, the rate 
control is achieved by quantizing or discarding the Fourier 
coefficients. 

 TL = U ΛU   (3) 
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where L is the Laplacian matrix of the graph G(L, E), U is a 
matrix whose rows are eigenvectors of L, Λ is a diagonal 
matrix with eigenvalues of L as its diagonal elements, f and F 
are the corresponding pixel values and transformed 
coefficients, respectively. 

The SA-DCT [8] is a commonly employed transform 
coding approach for shape-adaptive compressions. As long as 
we obtain an arbitrary shape block, the SA-DCT is perform 
by vertical DCT followed by horizontal DCT on each column 
and row as shown in Fig. 3, where grey pixels indicate the 

Fig. 3   An illustration of the SA-DCT process and the mean 
weighting defect. 

 
Fig.2   The proposed shape-adaptive compression framework. 



opaque pixels. The transformed coefficients are flushed 
toward the top-left corner, where the lowest frequency locates. 
Besides, (5) and (6) denote the L-point DCT.  
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where u, v=0, 1,…, L-1; x and y are the one-dimensional 
signal and the transformed coefficients respectively; DCTL is 

the pre-calculated transform matrix; 0 1/ 2c   if u=0 and 

0 1c   otherwise; SL is the scaling factor. 

According to the selection of the scaling factor SL, different 
defects may occur to the reconstructed patches. In [9] and [10] 
the mean weighting defect and the noise weighting defect are 
addressed. If SL is not inverse proportional to the length L, it 
will result in unnecessary AC coefficients due to the different 
energies of the DCT matrices of different lengths as depicted 
in Fig. 3. Therefore, SL =4/L is used in [8]. This type of the 
SA-DCT is referred to nonorthonormal SA-DCT (NO-SA-
DCT). Since the concept of the NO-SA-DCT is to scale the 
DCTs of different lengths to the same length, the quantization 
noises may be amplified by the cause of this act, which is also 

noted as the noise weighting defect. Alternatively, S = 2 /L L  

can be used to solve the noise weighting defect and referred 
as pseudo-orthonormal SA-DCT (PO-SA-DCT). However, if 
the mean value of the block is not equal to zero, the mean 
weighting defect will still exist. In [9], a solution to this trade-
off problem is proposed as ΔDC-SA-DCT, using the ΔDC 
correction to prevent both systematical defects simultaneously. 

III. PROPOSED METHOD 

A. Polynomial Contour Approximation 

In our proposed method, the shape coding is based on the 
polynomial curve approximation algorithm in [16]. The 
algorithm starts with finding dominant points using weighted 
curvature values in (8) on each shape contour. Therefore, the 
whole contour is divided by these dominant points into 
several curve segments. 
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For each segment, the Lagrange polynomial approximation 
is applied in (9). In [16], Ding et al. suggest that using the 
third order polynomials is the most proper choice. In addition, 
since every segment is projected to fixed x and y axis first, it 
is proved in [16] that we only need to record two coefficients 
of the estimated polynomial: 
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where hk is the obtained coefficient. 
The solution for h1 and h2 are described in (11). For full 

derivations and subsequent dominant point and coefficient 
encoding, reader can refer to [16]. 
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B. Pre-Processing 

As the overall framework of the proposed algorithm has 
been provided in Fig. 2, we can view the flow as two main 
part: pre-processing on image regions and shape-adaptive 
compression algorithm. In the pre-processing step, the image 
segmentation is performed by using the algorithm in [20]. 

Since the division usually consists of fractional small 
regions, we first merge these small regions with their 
neighbors. Then, a simplification step using morphological 
closing and opening are applied to each region to eliminate 
some disturbances on region boundaries. Subsequently, our 
method makes use of the efficient contour compression 
algorithm in [16] to approximate and encode the simplified 
segmentation results.  

After the approximation, a refinement procedure is applied 
to deal with region overlapping or emptiness in Fig. 7 caused 
by the approximation. To solve the problem that larger 
regions lay over smaller inside regions, we reorder the coding 
sequence by their areas. Therefore, the latter decoded regions 
are able to directly cover on the previously decoded regions. 
On the other hand, some pixels may receive multiple or idle 
labels due to the lossy compression. In such cases, we use 
voting mechanism from its neighboring pixels.  

A pair of examples of the segmentation and approximated 
outputs are provided in Fig. 1(a) and (b). We can observe that 
despite some differences, the structural boundaries in the 
image are still remain approximately the same or even 
without the noises. As a result, the simplified and 
approximated region information is forwarded to the main 
shape-adaptive compression procedure. 

Fig. 4   The region overlapping or emptiness problems. 



C. Color Model 

Different from most compression approaches that convert 
the original RGB color image into the YCbCr color space. In 
our method, we employ the YCgCo color model [15] (12). 
Besides being a lossless color conversion with respect to the 
RGB color model, the YCgCo also proved to have better 
decorrelation ability compared to the YCbCr. 
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D. Shape-Adaptive Prediction 

The image prediction step is applied before the transform 
coding in the H.264 intra coding and the AIC. It is based on 
the concept that, in natural images, some textures may occur 
periodically, causing lots of redundancies. Therefore, if we 
are able to generate a prediction on current block using causal 
processed blocks, only the differential residual data need to be 
sent to subsequent procedures. This scheme can help 
decorrelate the input image in the first place. The proposed 
shape-adaptive image prediction is extended from the intra 

4 4  block prediction in the H.264/AVC standard, which 
provides nine prediction modes with respect to nine different 
directions as shown in Fig. 5.  

In our shape-adaptive prediction, the arbitrarily shaped 
regions are first partitioned into 8 8  blocks. Secondly, we 
pad additional marginal blocks to the region borders and fill 
the non-region pixels with the regional mean value. Then, the 
prediction process that uses causal block information to 
estimate the current block in conventional block-based 
systems is able to be committed on the blocks inside the red 
box in Fig. 6. The only difference will be the error 
measurement while selecting the best prediction. For an 
incomplete block having a portion of regional and non-
regional pixels, we only count the errors of the regional pixels. 
In [13], Liu and Ngan also suggest a shape-adaptive 
prediction scheme by assigning 128 to non-regional pixels to 
perform normal prediction process on regional pixels. 
However, in our consideration, the padding values should 
vary with region properties instead of fixed values. Fig. 11 
provide a comparison of the proposed shape-adaptive 
prediction and the H.264 intra prediction of the Y channel in 
low bitrate scenario. Obviously, the shape-adaptive version is 
able to give better estimation. 

For encoding the prediction modes and the regional means, 
we use the adaptive arithmetic coding instead of exponential 
Golomb code or fixed length coding that employed in other 
prediction scheme. The coding steps are as follows. If the 
current block share the same prediction mode with the 
previous one, we encode a symbol ‘0’ to indicate the same 
mode. Otherwise, a symbol ‘1’ and its mode are encoded 
using arithmetic coder. Table I shows the encoding results of 
different approaches. 

Fig. 5   The nine prediction modes used in the H.264 intra 
coding and the AIC [6]. 

 

 
Fig. 6   The scanning procedure in the shape-adaptive 
prediction. Each square represents a 8 8  block. Blocks 
outside the red box are the marginal paddings; blocks with 
grey color will not be processed since no regional pixels are 
contained.  

 

 
(a)                                             (b) 

Fig. 7   The prediction image of the Y channel under 1 bpp 
scenario. (a) H.264 intra prediction. (b) Proposed shape-
adaptive prediction. 

TABLE I 
COMPARISON OF PREDICTION MODE ENCODING METHODS 

 
Exp-

Golomb 
Code 

Fixed 
Length 
Coding 

Adaptive 
Arithmetic 

Coding 
Lena 6295 4710 4648 

Bamboo 5277 3946 3856 

Penguin 3681 2810 2694 



E. Shape-Adaptive Transform 

In section II, we have discussed about the SA-DCT and its 
different forms. The NO-SA-DCT and PO-SA-DCT have 
tradeoff between the mean weighting and the noise weighting 
defects. On the other hand, the ΔDC-SA-DCT is said to be the 
optimal choice [10] to process “normal” image blocks. 
However, in our approach, since the image prediction is 
applied before the transform coding, the mean values in most 
blocks are zero or near zero. In such a case, the PO-SA-DCT 
is able to provide better performances. Fig. 8 shows the 
simulation results of our compression performance using 
different kinds of SA-DCTs. 

F. Quantization and Entropy Coding 

In order to achieve the rate control, the quantization step is 
required to quantify the transformed DCT coefficients. In our 
method, we follow the concept of the AIC which also deals 
with prediction residues and use uniform quantization steps. 
That is, no matter low or high frequencies the coefficients 
represent, we apply the same level of divisions (13). After the 
quantization, the zigzag scanning is applied to convert the 
coefficients into one-dimensional form. 
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where C and Cq are the transformed and quantized DCT 
coefficient within a block, and Qstep is the quantization step. 

As for encoding the resultant quantized coefficients, we 
employ the context-based adaptive variable-length coding 
(CAVLC) encoder from the H.264/AVC standard. In addition, 
some modifications are made to let the CAVLC encoder be 
able to encode arbitrary length inputs. 

G. Shape-Adaptive Deblocking 

To reduce the blocking artifacts that appear in most 
compression systems using block partitioning, we further 
proposed a shape-adaptive deblocking technique based on the 
in-loop deblocking filter [14]. The debloking process will 
check every horizontal and vertical block boundaries and use 
smoothing filters to smoothen the potential blocking artifacts. 
Fig. 9 shows an example of the vertical block boundaries. 
Besides, thresholds related to the quantization levels are taken 
into consideration to prevent degradation on structural edges 
of the image that happen at the block boundaries. If the 
difference between the pixels at the boundary is too large it 
may be the true structural edge instead of additional block 
edges (14). In addition, depending on the boundary types, 
borders at macro 8 8  or 16 16 blocks or at normal 4 4  
blocks, and the severity of the deformation, filters of different 
lengths as in (15) will be applied differently. The full decision 
tree about the filter usage can be found in [14]. 
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Fig. 8   Comparisons of different SA-DCTs by the PSNR. 

 
                (a)                                             (b) 
Fig. 9   The vertical block boundaries. (a) The block view. 
(b) The pixel view. 

 
Fig. 10   The shape-adaptive deblocking in the block view. 
Red borders: macro blocks. Black borders: normal blocks. 
 

 
Fig. 11   The deblocking results under 0.9 bpp. (a) The original compressed 
image. (b) The deblocked image.



where pi and qi are pixels from the adjacent blocks as depicted 
in Fig. 9 (b); α and β are quantization related thresholds. 

In our shape-adaptive deblocking process, some features 
are added. First, as shown in Fig. 10, the smoothing filters are 
only applied on pixels within the current region even if they 
share the same block with the non-regional pixels. Second, 
instead of using the absolute differences in (14), we suggest to 
use relative difference ratios to check the thresholds (16). 
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Third, if the difference of a block boundary is below the 
threshold but it is not large enough to be perceived, we may 
skip the smoothing and therefore speed up the deblocking 
procedure. An additional condition is set to check this 
scenario. Finally, since the uniform quantization are used in 
our approach, the adaptive thresholds α and β are designed as 

 1stepQ c  ,  (17) 

 2stepQ c    (18) 

where c1 and c2 are two constant and c1 < c2.  
 

In summary, the proposed algorithm employs the following 
techniques.  First, instead of using YCbCr color model, the 
image is converted into YCgCo color space instead. Secondly, 
the shape-adaptive version of the nine mode prediction is 
proposed and used. In the transform coding, we discover that 
for processing prediction residues, the non-optimal PO-SA-
DCT is able to give better efficiencies than other SA-DCT 
approaches. The quantization to the transformed coefficients 
is perform uniformly following the experiments results from 
ourselves and the AIC in processing prediction residues. 
Finally, we propose a shape-adaptive deblocking scheme, 
which is modified from the in-loop deblocking filter, to 
reduce the potential blocking artifacts at high compression 
ratios. 

IV. SIMULATION RESULT 

In this section, we present the compressed images of our 
algorithm compared to other commonly used approaches and 
standards. The visual comparison under various bitrates are 
provided in the first part. Then, we employ commonly used 
measurements, the peak signal-to-noise ratio (PSNR), and a 
recent proposed image quality assessment using gradient 
similarity [22] to measure the objective scores of compressed 
images. 

A. Visual Comparison 

Fig. 13-21 show the compression results of the four images 
depicted in Fig. 12. We would like to focus on the low bitrate 
scenarios to observe how the different forms of degradations 
affect the visual qualities. Generally, some additional artifacts 
start to unveil when the bitrate is below 1 bpp.  

The results of the H.264 intra coding degrade the most due 
to the high quantization and prediction errors. Images from 
both the JPEG and the H.264 intra coding are suffer from 
blocking artifacts. In addition, the results of the JPEG tend to 
eliminate the high frequency component due to its 

quantization design. However, in the images having lots of 
details like the “baboon” image, the overall contrast and the 
small features are deformed. As for the results from the 
JPEG2000, although they seem to retain most of the details of 
the original image, there are also additional and noticeable 
ghost artifacts which are annoying and may mislead the 
computer analysis of image features. 

On the other hand, the shape-adaptively compressed images 
from our method offer a different kind of degradation at high 
compression ratios. Thanks to the deblocking scheme and the 
region-wise processing, the structural edges are able to remain 
sharp and the main deformation in our method is the 
smoothing effect in texture areas. Therefore, despite some 
losses in details, the overall structures of the image are still 
distinguishable. In our opinion, the degradation form of our 
algorithm is more reasonable than other approaches. 

B. Objective Measurement 

In this subsection, the rate distortion curves of different 
methods are compared. We employ the PSNR (19) and a 
recent proposed image quality assessment index based on 
gradient similarity (GBIQA) [22] as objective quality 
measurement metrics. Although the PSNR is relatively 
conventional image quality assessment approaches, it is still 
referential in some aspects. For the GBIQA, we find this 
quality index a novel and convincing method for its ability to 
measure the gradient similarity in a reasonable way.  It is 
worth noting that for color images, the quality assessment is 
committed in YCbCr color space due to the fact that the 
differences    in    luminance    and     chrominance     channels  

 
(a) (b) 

 
(c) (d) 

Fig. 12   The test images in the following visual comparisons. 
(a) The “Lena” image. (b) The “baboon” image. (c) The 
“pepper” image. (d) The “girls” image. 



 
(a) (b) 

 
(c) (d) 

Fig. 13   The visual comparison of the “lena” image under 1 bpp. (a) The proposed method. (b) H.264 intra coding. (c) JPEG. (d) 
JPEG2000. 
 

 
(a) (b) 

 
(c) (d) 

Fig. 14   The visual comparison of the “lena” image under 0.6 bpp. (a) The proposed method. (b) H.264 intra coding (0.8 bpp). (c) 
JPEG. (d) JPEG2000. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 15   The regional crops of the “Lena” image. (a) The original patch. (b) The proposed method. (c) H.264 intra coding. (d) 
JPEG. (e) JPEG2000. 
 

 
(a) (b) 

 
(c) (d) 

Fig. 16   The visual comparison of the “baboon” image under 1 bpp. (a) The proposed method. (b) H.264 intra coding. (c) JPEG. 
(d) JPEG2000. 
 



 
(a) (b) 

 
(c) (d) 

Fig. 17   The visual comparison of the “baboon” image under 0.6 bpp. (a) The proposed method. (b) H.264 intra coding (0.8 bpp). 
(c) JPEG. (d) JPEG2000.  

 
(a) (b) 

 
(c) (d) 

Fig. 18   The visual comparison of the “pepper” image under 0.9 bpp. (a) The proposed method. (b) H.264 intra coding (0.8 bpp). 
(c) JPEG. (d) JPEG2000. 

 
(a) (b) 

 
(c) (d) 

Fig. 19   The visual comparison of the “girls” image under 1 bpp. (a) The proposed method. (b) H.264 intra coding. (c) JPEG. (d) 
JPEG2000. 

 
(a)                                                                                                       (b) 

Fig. 20   The PSNR performances of (a) “Lena” image and (b) “baboon image. 



respectively have stronger physical meaning than the 
differences in the R, G, and B color channels. 
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and the MSE is defined as 
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where L is the maximum level of pixel values, which is 255 in 
our case; I and Iref are the compressed and the original images, 
respectively. 

The PSNR performance comparisons of the “Lena” and the 
“Baboon” images are provided in Fig. 20. From the plots, we 
can observe that the performance of our method have higher 
PSNR values than other methods except the JPEG2000, 
which is the only non-block-based approach and considered 
as the ceiling of the block-based approaches.  

On the other hand, the GBIQA comparison in Fig. 21 
suggests a different aspect. Based on gradient similarity 
measurement, which is closer to the human visual system 
characteristics, the shape-adaptively compressed images 
receive higher quality scores with respect to other methods. 
This result echoes the fact we find in the visual comparison 
that texture smoothing in shape-adaptive image compression 
is less disturbing than additional artifacts like blocks or ghosts. 

V. CONCLUSION 

In this paper, we proposed a shape-adaptive image 
compression system using lossy shape coding, shape-adaptive 
versions of the image prediction, transform coding and 
deblocking techniques. Different from most shape-adaptive 
methods with lossless region coding, we find it more efficient 
if some tolerable errors are allowed to record the shape 
information. To prevent the label overlapping or emptiness 
caused by lossy shape coding, we use an additional 
refinement procedure to retrieve the missing labels. The 
proposed region-wise image prediction allows us to estimate 
the image more precisely. In addition, due to the prediction 

scheme, the non-optimal PO-SA-DCT becomes more useful 
compared to other SA-DCT forms. While reconstructing the 
compressed images, we employ the deblocking filter and 
modify it to shape-adaptive version to reduce the potential 
blocking artifacts. In subjective visual comparisons, we find 
the results from the proposed method have better visual 
qualities and more reasonable degradations at high 
compression ratios. As for the objective quality measurements, 
though the PSNR measurements do not have significant 
performance compared to the JPEG2000, in the quality index 
measured by gradient similarities, the proposed method 
achieves the best quality scores among other compared 
methods in all bitrates. 
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