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Abstract— Detecting pronunciation erroneous tendency (PET) 

can provide second languages learners with detailedly instructive 

feedbacks in the computer aided pronunciation training (CAPT) 

systems. Due to the data sparseness, DNN-HMM achieved 

limited improvement over GMM-HMM in our previous work. 

Instead of directly employing DNN-HMM to detect PETs, this 

paper investigated how to further improve the performance by 

DNN based features extracting in data sparse condition. Firstly, 

the probabilities of articulatory features derived from the top 

layer of DNN were fed into DNN-HMM. Secondly, the bottleneck 

features (BNF) extracted from the middle hidden layer were 

incorporated with original MFCC and then fed into SGMM-

HMM. The experimental results showed that the new features 

converted from original acoustic features with DNN were more 

discriminative, and SGMM with BNF outperformed DNN in 

detecting PETs. The SGMM-HMM obtained the best detection 

results, achieving FRR of 5.3%, FAR of 29.6% and DA of 90%. 

I. INTRODUCTION 

With accelerating process of globalization, there is an 

increasing need for learning a second language. As an 

important component of computer assisted language learning 

(CALL) systems, computer assisted pronunciation training 

(CAPT) has been attracting considerable attention in recent 

years [1-5]. As a crucial technology in CAPT, 

mispronunciation detection can detect learners' pronunciation 

errors, ideally provide corrective feedbacks, and is still a 

challenging research area. Neri et al. showed that 

implementing corrective feedback even if in a limited form, 

did improve the pronunciation quality of students on an 

individual phoneme level and had a positive impact on user's 

motivation [6]. Extended pronunciation lexicon or recognition 

network including standard pronunciations and common 

mispronunciations was employed to detect mispronunciation 

and provide diagnostic information [7-9]. This method can 

give corresponding phone substitution feedback when learners 

mispronounce phone /A/ as /B/. 

Primary foreign language learners frequently suffer from 

phoneme substitution errors. However, the mispronunciations 

produced by intermediate and senior learners are neither 

target-like nor absolute phoneme categorical substitutions. 

Their erroneous pronunciation always deviate a little from 

canonical sound [10]. Compared with the canonical 

pronunciation, the mispronunciations are some acoustic 

variations but not different categories. In our previous work, 

pronunciation erroneous tendency (PET) was proposed to 

define a set of incorrect articulatory configuration regarding 

main articulation-placement and articulation-manner, such as 

shortening errors which can describes an insufficient 

aspiration [11]. Detailedly corrective feedback (e.g. “please 

try to round your lip more”) can be derived by comparing the 

difference between the detected PETs and their corresponding 

canonical articulatory configurations. The acoustic model in 

this framework was implemented by GMM-HMM [12], and 

subsequently replaced by DNN-HMM [13]. However, the 

DNN-HMM system achieved limited improvement over the 

GMM-HMM one due to the data sparseness problem. For 

further exploring the use of DNN for PETs detection in data 

sparse condition, this paper was motivated by the following 

two aspects. 

1) Articulatory attributes refer to those abstract classes 

which reveal the positions and movements of different 

articulators during speech production. With speech attribute 

modeling, Li et al. improved mispronunciation detection and 

enriched diagnostic feedback [14]. On the one hand, 

articulatory attributes are consist with the definition of PET; 

on the other hand, they are more word, speaker and even 

language independent, which allows to share data to train 

acoustic model. Therefore, the articulatory features (AFs) 

extracted from articulatory attributes may be helpful to detect 

PETs. 

2) Bottleneck (BN) features generated from multiple layer 

perceptron (MLP) [15], particularly deep neural networks [16-

17], achieved significant improvement in ASR because 

bottleneck layer can learn some latent patterns of the input 

features. However, the effect of BN features is not obvious 

while dealing with small/medium-scale tasks in that limited 

training data is insufficient to train a complicated deep neural 

network. Therefore, Qi et al. investigated subspace Gaussian 

mixture model (SGMM) for BN features based ASR systems 

and obtained significant performance improvement [18]. 

Therefore, this paper investigated two approaches to further 

improve the performance of DNN based PET detection in 

data sparse condition. Firstly, the probabilities of articulatory 

features derived from the top layer of DNN were fed into 

DNN-HMM to detect PETs. Secondly, the bottleneck features 

were extracted from the middle hidden layer of DNN and then 

were fed into SGMM-HMM. The rest of the paper is 

organized as follows: Section II gives a brief description of 

PET detection framework. Section III and Section IV present 

articulatory features and bottleneck features for PET detection, 

respectively, which is followed by experiment and results in 

Section V. Finally, conclusions are given in Section VI. 



II. PET DETECTION FRAMEWORK 

The illustration of the detection system is provided in Fig. 1 

with an example. Firstly, the system prompts learners to speak 

a given utterance “两块五一斤(Two point five yuan per jin)”, 

which corresponds to the Pinyin ("l iang k uai u i j in"). 

Secondly, according to the extended pronunciation network, 

records of learner's speech are recognized via the ASR-based 

detector. Then the system judges the sound based on the 

difference between the recognized phone-level transcription 

(" l iang k uai u{w} i j in") and the canonical one. At last, the 

corrective feedbacks ("please try to round your lip more when 

pronouncing the phoneme 'u' ") will be given to learners. 

 

Fig. 1 Flow chart of PET detection framework 

III. USING ARTICULATORY FEATURES FOR PET DETECTION 

A. Articulatory categories 

Chinese syllables can be divided into two parts: Initials and 

Finals. Phonological studies suggest that both the Initials and 

the Finals can be further divided into a series of detailed 

categories based on articulatory movements such as manner 

of articulation, place of articulation, namely, articulatory 

features (AFs).  For Initials, they are divided into 4 groups. As 

for Finals, there are 5 groups. The detailed information is 

shown in Table I. 

TABLE I  

 CATEGORIES OF AFS 

Feature groups Feature values 

Initials 

Voicing Voiced, unvoiced, null, sil 

Place 
Bilabial, Labiodental, Alveolar, Dental, 

Retroflex, Palatal, Velar, null, sil 

Manner 
Stop, Fricative, Affricative, Nasal, Lateral, 

null, sil 

Aspiration Aspirated, Unaspirated, null, sil 

Finals 

Front-back of 

tongue 

Front, Middle-Front, Middle, Middle-back, 

back, null, sil 

High-low of 

tongue 

High, Middle-high, Middle, Middle-low, 

low, null, sil 

Rounding +Round, -Round, null, sil 

Four hu 
Kaikouhu, Hekouhu, Qicihu, Cuokouhu, 

null, sil 

location of 

dominant vowel 

head-dominant, centre-dominant, tail-

dominant, null, sil 

B. Extraction of articulatory features 

Since manual AF annotations of speech signals are rather 

difficult and costly to produce, one reasonable way of 

generating training material for the articulatory classifier is to 

convert phone-based training transcriptions to feature 

transcriptions [19]. This can be achieved by using a 

canonically defined phone-feature conversion table (such as 

Table I). In this paper, we used the posterior probabilities of 

the articulatory categories as the articulatory features. As 

shown in Fig. 2, to obtain the articulatory features, a bank of 

deep neutral network (DNN) classifiers were trained. We 

directly used the posterior probabilities of articulatory 

categories from the output of softmax layers. The input 

features of AF extractors were MFCC parameters, which 

consisted of the 6 preceding frames, the current frame and the 

6 succeeding frames. “Append&Expand Module” block 

stacks together with the outputs delivered by the articulatory 

feature extractors and generates a supervector, which is fed 

into next module. 

MFCC  features 

extraction

Voicing

Manner

Location of 

dominant 

vowel 

…

Combination CAPT 

…

Append&Expand

 

Fig. 2 Flow chart of AF extractors 

IV. SGMM FOR BOTTLENECK FEATURE 

A. Bottleneck  features 

Bottleneck feature is obtained from the bottleneck layer of 

an MLP structure. A particular property of the bottleneck 

MLP is that the bottleneck layer can learn some eminent 

patterns of the in the training phase. As shown in the left part 

of Fig. 3, there are 5 layers in total and 3 of them are hidden. 

The units of input layer (at the bottom) stand for a long-

context feature vector. The feature vector is derived by three 

steps: 1) concatenating 9 consecutive frames of the primary 

feature followed by de-correlation and dimensionality 

reduction to 40 using linear discriminant analysis (LDA) [20]; 

2) the obtained features were further de-correlated by using 

the maximum likelihood linear transform (MLLT) method 

[21]. It was followed by speaker normalization using feature-

space maximum likelihood linear regression (fMLLR) 

[22].The fMLLR was estimated by using the GMM-based 

system applying speaker adaptive training (SAT) [22-23]; 3) 

the current frame features concatenated 5 preceding frames 

and 5 succeeding frames. Therefore, the number of units at 

input layer of the MLP is 440. The output layer (at the top) 



corresponds to the tied states of HMM, namely, sub-phones 

(“senone”). The three hidden layers are constructed following 

a 1024-42-1024 configuration, where the 42-unit layer (in the 

middle) is the “bottleneck layer”, and the activations of the 

units yield the BNF. 

The network is initialized with the deep belief network 

(DBN) pre-training procedure [24]. A DBN can be efficiently 

trained in an unsupervised, layer-by-layer manner where the 

layers are constructed by stacking up multiple Restricted 

Boltzmann Machines (RBMs). After pre-training, all weights 

and bias were discriminatively trained by optimizing the cross 

entropy between the target (correspond to context-dependent 

HMM states) probability and actual output of softmax output 

with Back-Propagation (BP) algorithm [25]. 

B. The framework of SGMM for BNF 

The traditional GMM-HMM framework for ASR assumes 

that the covariance matrices of the Gaussian components are 

diagonal. This assumption is obviously strong but it is 

necessary for small/medium-scale tasks which endure limited 

training data. BNF are highly sparse, i.e., most of the mass of 

feature concentrates on a few dimensions. This in turn leads 

to high correlation among the dimensions of the feature [18]. 

We firstly used LDA and MLLT de-correlated and reduced 

the feature dimensionality. Then we resorted to a more 

systematic approach, i.e. modeling the correlation using non-

diagonal Gaussians. SGMM is a more feasible choice, which 

not only relaxes the diagonal covariance assumption and thus 

can model the correlation, and but also it assumes some 

shared structures, thus model the correlation in a 

parsimonious way. The SGMM is also effective in training 

acoustic model with limited amounts of training data. 

The framework of SGMM for BNF is shown in the right 

part of Fig. 3, where a conventional GMM-HMM system is 

first constructed, and then a universal background model 

(UBM) is generated by clustering the Gaussian components. 

Later, the SGMM is initialized by copying the UBM, and then 

trained by an E-M algorithm similar to the GMM [26]. The 

input features of GMM-HMM consisted of the primary 

features and the bottleneck features. 

       Long-context feature

GMM-HMM

UBM

SGMM
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Fig. 3   Framework of SGMM model with bottleneck features 

V. EXPERIMENTAL AND RESULTS 

A.  Corpus 

In order to keep consistent with our previous work, this 

study was conducted on the continuous speech of Japanese 

part of BLCU inter-Chinese speech corpus [11]. Table Ⅱ 

gives some overall statistics of corpus. 80% of the data was 

used for training and the rest for testing. For extracting the 

AFs, 12 (6 males and 6 females) native speakers’ data of the 

BLCU inter-Chinese speech corpus were employed for 

training DNN based extractors with a portion (10%) of the 

training data withheld as a cross validation set.  

TABLE Ⅱ 

 THE DETAIL INFORMATION OF CORPUS 

Text 301 utterance 

Speakers 7 females 

Number of utterance 1899 

Number of phonemes 26431 

Total duration 1.57 h 

Number of types of PETs 65 

 

B. Experimental setup 

As for AF, firstly, the boundary information of Initials and 

Finals of the training data was generated from forced 

alignment with a recognizer based on DNN. Then, the 

training targets were obtained by converting phone-based 

training transcriptions to articulatory transcriptions. For the 

articulatory DNN classifiers training, we randomized the 

order of the training utterances lest the DNN training fall into 

a local optimum. We tuned the number of hidden nodes and 

hidden layers for the best frame classification accuracy for 

each articulatory features extractor. Frame accuracy is defined 

as the ratio of the number of correctly classified frames over 

the total number of frames, where classification is considered 

to be correct if the highest output of the DNN corresponds to 

the correct target. This is a fine preliminary indicator of 

system performance as well as an efficient way to tune the 

parameters without running the whole system. The final frame 

level accuracy of each group on the cross-validation data is 

shown in Table Ⅲ. 

The network was trained for 100 epochs using stochastic 

gradient descent (SGD) with a mini-batch size of 128, 20% 

dropout [27] in the input layer, 40% dropout in the hidden 

layers, and a cross-entropy objective.  

After obtained the AFs, we fed them into DNN-HMM 

model. The DNN–HMM model was initialized with the deep 

belief network (DBN) pre-training procedure [24] and fine-

tuned with Back-Propagation (BP) algorithm [25]. 

As for SGMM, we trained three kinds of SGMM-HMM 

based models with only MFCC, only BN features converted 

from MFCC, and both of them. Moreover, the models 

employing Perceptual Linear Predictive Analysis (PLP) or 

filter-bank (FBANK) were explored. For the first stage of 

training GMM-HMM, original acoustic features (13-

dimemsion MFCC, 13-dimension PLP, and 23-dimension 

FBANK), with their first and second order derivatives 



respectively, were extracted from utterances with a 20ms 

length window shifted every 10 ms. 

TABLE Ⅲ 

FRAME ACCURACY OF THE ARTICULATORY DNN CLASSIFIERS 

ON THE CROSS VALIDATION 

Articulatory 
Group  

Accuracy (%) 
Articulatory 

Group 
Accuracy (%) 

Voicing 98.29 
High-low of 

tongue 
96.25 

Place 96.84 Rounding 98.03 

Manner 96.84 Four hu 96.98 

Aspiration 96.12 
location of 

dominant vowel 
97.21 

Front-back of 
tongue 

95.18   

 

C. Evaluation metric 

Three kinds of metrics are used to inspect the evaluation 

performance:  

� False Rejection Rate (FRR): The percentage of correctly 

pronounced phones that are erroneously rejected as 

mispronounced; 

� False Acceptance Rate (FAR): The percentage of 

mispronounced phones that are erroneously accepted as 

correct; 

� Detection Accuracy (DA): The percentage of detected 

phones that are correctly recognized, i.e. the detection 

result is consist with the human annotations. 

D. Results 

We compared the system using MFCC and the one using 

AF for the PET detection. As shown in Table IV, though a 

slight degradation existing in FRR, the DNN-HMM-AF 

model obtained better performance in both FAR and DA over 

DNN-HMM+MFCC model. 

TABLE IV 

 THE RESULTS OF AF-BASED SYSTEM AND MFCC-BASED SYSTEM 

Acoustic model FRR FAR DA 

DNN-HMM+MFCC [13] 6.7% 35.9% 87.6% 

DNN-HMM+AF 7.3% 31.1% 88.1% 

 

We developed a series of SGMM-HMM based systems to 

demonstrate the effects of SGMM using BNF in detecting 

PETs. The statistic results are shown in Table V. As we can 

see from Table V, the SGMM-HMM+bnf (converted from 

MFCC) system outperformed the SGMM-HMM-MFCC one, 

which still attained comparable results to the DNN-

HMM+MFCC system. Further improvement was obtained in 

the system incorporating BN feature and its corresponding 

original acoustic feature MFCC, which illustrated the 

advantages of SGMM model and the BN features generated 

by DNN. 

Moreover, this research compared three SGMM-HMM+bnf 

based systems differing in acoustic features. FBANK 

outperformed MFCC and PLP in the SGMM-HMM+bnf 

system, which is consist with the DNN-HMM system in [13]. 

A lattice combination of the results of three feature systems 

led to the best PET detection performance: FRR of 5.3%, 

FAR of 29.6% and DA of 90%. 

TABLE V 

 THE RESULTS OF SGMM-BASED SYSTEM AND DNN-HMM-

BASED SYSTEM 

Acoustic Model FRR FAR DA 

DNN-HMM+MFCC [13] 6.7% 35.9% 87.6% 

SGMM-HMM+MFCC 6.1% 39% 87.4% 

SGMM-HMM+bnf 6.7% 31.8% 88.4% 

SGMM-HMM+MFCC+bnf 5.7% 33.1% 88.9% 

SGMM-HMM+PLP+bnf 6.1% 31.1% 89% 

SGMM-HMM+FBANK+bnf 5.5% 29.6% 89.8% 

SGMM-HMM System combination 5.3% 29.6% 90% 

VI. CONCLUSIONS 

In this paper, we investigate how to improve the 

performance of DNN based PET detection in data sparse 

condition. Instead of constructing hybrid DNN-HMM model, 

DNN was mainly used to extract more discriminative features. 

On the one hand, with the target of articulatory features, the 

posteriors probabilities were extracted from the top layer of 

DNN and then fed into DNN-HMM model; on the other hand, 

bottleneck features were derived from the middle “bottleneck 

layer” of DNN, incorporated with original acoustic features 

and then fed into SGMM-HMM model. The results showed 

that the system based on AF, which was converted from 

MFCC with DNN, outperformed the original one in detecting 

PETs and the SGMM-HMM model with BNF and MFCC was 

more discerning than DNN-HMM model. With lattice 

combination technology, best detection result was obtained by 

combining three SGMM-HMM based systems, achieving 

FRR of 5.3%, FAR of 29.6% and DA of 90%. We plan to 

apply our approaches and analyses to larger speech corpora 

like iCALL [28] for future work 
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