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Abstract—We investigate the effects of time and frequency
sampling on short-time Fourier transform modifications to be
used for speech dereverberation based on deep neural networks
(DNNs). We first show that by adopting a linear activation
function at the output layer and globally normalizing the target
features into zero mean and unit variance, better performances
can be obtained than existing DNN approaches. Then we show
that the quality of dereverberated speech could be degraded with
denser sampling in time for longer reverberation times, even
at the price of increased computational complexities, requiring
an adaptive time sampling strategy. On the other hand, the
difference between the unwrapped phases of reverberant and
anechoic speech becomes negligible with a dense sampling in
frequency, implying a reduced speech distortion. Therefore, there
is a great potential to enhance DNN based acoustic signal
processing if the conventional sampling strategy can be carefully
adjusted.

I. INTRODUCTION

When a microphone is placed at a distance from a talker
in an enclosed space, the received signal will be a collection
of many delayed and attenuated copies of the original speech
signals, that are caused by the reflections from walls, ceilings,
or floors [1]. As a result, reverberation often degrades speech
quality and intelligibility.

Many dereverberation techniques have been proposed in the
past [2], [3], [4], [5]. One direct way is to estimate an inverse
filter of the room impulse response (RIR) [6] to deconvolve the
reverberated signal [2]. However, a minimum phase assump-
tion is often needed, which is almost never satisfied in practice
[6]. The RIR can also be varying in time and hard to estimate
[1]. Recently, due to their strong regression capabilities, deep
neural networks (DNNs) have been widely used in speech
enhancement [7], source separation [8], and bandwidth expan-
sion [9]. Han et al. [5] also proposed to dereverberate speech
using DNNs, to learn a spectral mapping from reverberant to
anechoic speech. Although good results have been reported,
they utilized a sigmoid activation function at the output layer
and normalized the target feature into an unit range, restricting
the performance improvements. While we proposed to adopt
a linear activation function at the output layer and to globally
normalize the target features into zero mean and unit variance
in [10], achieving considerable performance improvements,

especially for perceptual evaluation of speech quality (PESQ)
[11] .

Most dereverberation algorithms use the short-time Fourier
transform (STFT) [12], which is sampled in both time and
frequency dimensions, to obtain a discrete time-frequency
representation of speech. The conventional sampling strategy
is that the rates are chosen to avoid aliasing in both time
and frequency domains, in order to reconstruct exactly the
speech signal from its corresponding sampled STFT [13].
Since the DNN-based approach is also based on an analysis-
modification-synthesis (AMS) framework, the sampling strat-
egy should take into consideration not only reconstruction, but
also the modification procedures.

In this study, we investigate the impact of time and fre-
quency sampling rates of STFT on the DNN-based derever-
beration performances. A recently proposed DNN model [10]
is utilized to learn a high-quality performance. We show that
for time domain sampling, denser sampling can result in a
degradation of DNN-based dereverberated speech for longer
reverberation times, even though speech can be reconstructed
more exactly. For frequency domain sampling, the estimation
of the unwrapped phase depends on the frequency sampling
rate. With a denser sampling, the difference between un-
wrapped phases of reverberant and anechoic speech becomes
less significant.

II. DNN-BASED SPEECH DEREVERBERATION

A block diagram of the DNN-based speech dereverberation
system, proposed in [10], is illustrated in Fig. 1. In the
training stage, the DNN, as a regression model, is trained
by using log-power spectral (LPS) features from pairs of the
reverberant and anechoic signals from a few input frames.
In the dereverberation stage, the well-trained DNN model
is fed with the LPS features of unseen speech to estimate
the LPS features of anechoic speech. Then we utilize the
estimated spectral magnitude and reverberant speech’s phase to
reconstruct the estimated anechoic waveform with an overlap-
add method.

In feature extraction, the spacing between adjacent analysis
window positions is the frame shift R and the N -point discrete
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Fig. 1. A DNN-based speech dereverberation system.

Fourier transform (DFT) is computed for each overlapping
windowed frame. Note that, the frame shift R is called the
time sampling rate of STFT in [13], different from the time
sampling rate Ts of the speech signal, x(n). And N denotes
the frequency sampling rate.

III. SAMPLING AND MODIFICATION OF STFT

The STFT is a function of both the discrete time n and
continuous normalized radian frequency ω, defined as [13]:

Xn(e
jω) =

∞∑
m=−∞

w(n−m)x(m)e−jωm (1)

where w(n−m) is a real time-shifted window to get a portion
of the input signal x(n) at a particular time index n with a
window of length L.

A. Time Sampling of STFT

Eq. (2) samples STFT at a time rate of (i.e., frame shift) R,

XrR(e
jω) =

∞∑
m=−∞

w(rR−m)x(m)e−jωm (2)

where r denotes frame index.
In conventional time sampling of STFT, the frame shift is

chosen to avoid an aliased representation of Xn(e
jω) from

which x(n) can be exactly recovered [14]. The frame shift is
typically fixed to half of the frame length [15] for practical
consideration in most dereverberation algorithms.

However, in a reverberant environment, the conventional
method is ineffective [2], [3], [4], [5] because it uses a fixed
temporal resolution, without considering the mixing conditions
of neighboring reverberant frames at different RT60s. For
weak reverberation, the reflected sounds travel a less distance
to a microphone [16], resulting in an intensive superposition in
the time domain. A dense sampling of Xn(e

jω), not needed
for strong reverberation, is now required to provide a high
temporal resolution.

B. Frequency Sampling of STFT

STFT, sampled at frequencies Ωk = 2πk/N (k =
0, 1, ..., N − 1) as the N -point DFT of the time-limited
sequence w(n−m)x(m), with N denoting the sampling rate:

Xn(e
jΩk) =

∞∑
m=−∞

w(n−m)x(m)e−jΩkm. (3)

The conventional frequency sampling strategy is to avoid
aliasing. According to the sampling theorem [17], Xn(e

jω)
should be sampled at a rate of at least twice its “time-width”,
i.e., N ≥ L [13]. In order to reduce the computational
complexity, most of the DNN-based systems use L as the
frequency sampling rate [5], [18].

From the unwrapped phase prospective, the phase spectrum
is dependent on the frequency rate, which is often a multipli-
cation of a power of two of the window size N = 2p × L,
where p is a non-negative integer. For conventional sampling
at p = 0, the unwrapped phase is random to some degree.
While for p ≥ 1, there exists a structure in the unwrapped
phases of anechoic and reverberant speech [19], implying a
great potential to learn the phase of anechoic speech from
that of the reverberant data.

From the above discussions, we can see that the sampling
strategy needs to be tailored to reflect the characteristics of
traveling echoes in reverberant environments and the proper-
ties of the unwrapped phase spectrum. Thus, there is a great
need to investigate the effects of sampling in the time and
frequency domains on DNN-based dereverberation systems.

IV. EXPERIMENTS AND RESULT ANALYSIS

The experiments were conducted in a simulated room of
dimension 6 by 4 by 3 meters (length by width by height).
The positions of the loudspeaker and the microphone were at
(2, 3, 1.5) and (4, 1, 2) meters, respectively. Ten RIRs were
simulated using an improved image-source (ISM) [20] with
reverberation time (RT60) [21] ranging from 0.1 to 1.0 sec,
with an increment of 0.1 sec. In order to learn a high-quality
DNN model, all 4620 training utterances from the TIMIT
set [22] were convolved with the generated RIRs to build a
large training set, resulting in about 40 hours of reverberant
speech. To test DNN’s generalization capability in mismatch
conditions, RIRs with RT60 from 0.1 to 1.0 sec, with the
increment of 0.05 sec (rather than 0.1 sec) were convolved
with 100 randomly selected utterances from the TIMIT test
set to construct the test set.

As for acoustic signal processing, all utterances were sam-
pled at a rate of 16 kHz, and the frame length was set to 32
ms (or 512 samples). In addition, PESQ, which has a high
correlation with subjective score [11], was used to evaluate
the dereverberation results.

Kaldi [23] was used to train DNNs. The DNN configuration
was 3 hidden layers, 2048 nodes and 7 frames of input
feature expansion for each layer. The number of pre-training
epochs for each RBM [24] layer was 1. The learning rate
of pre-training was 0.4. As for fine-tuning, the learning rate
and the maximum number of epochs were 0.00008 and 30,
respectively. The mini-batch size was set to 128. Input and
target features of DNN were globally normalized to zero mean
and unit variance [18].

A. Time Sampling on Enhanced Speech Quality

To study the frame shift’s effects on the DNN-based derever-
beration performances, a number of DNNs, whose training and



testing utterances were enframed by different frame shift sizes
with 512-point DFT computed for each overlapping segment,
are presented in Figs. 2, 3 and 4, denoted as “DNN-2ms”,
“DNN-4ms”, etc. “Rev” represents unprocessed reverberant
speech.

1) Frame Shift = 1/2 Frame Length: We follow the DNN
dereverberation results in [5] closely, which utilized a sigmoid
output layer and normalized the target features into an unit
range of [0, 1], referred as Han’s model. While we proposed
to adopt a linear output layer and to globally normalize the
target features into zero mean and unit variance. Performance
comparisons between Han’s model (“DNN-Han”) and the
proposed DNN model (“DNN-proposed”) with conventional
time sampling (R = 1/2 L), were given in Fig. 2. When
compared with Han’s dereverberation results, our DNN could
significantly boost PESQ by 0.31 on the average at all RT60s.
Another advantage of the proposed DNN was that it could
substantially improve the speech quality in terms of PESQ at
all RT60s. However, when compared with reverberant speech
at low RT60s below 0.2 sec, the results of Han’s system started
to show some considerable PESQ decreases.
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Fig. 2. Average PESQ results on the test set at different RT60s for R = 1/2 L.

2) Frame Shift ≤ 1/2 Frame Length: Fig. 3 presents the
improvement of PESQ obtained along all RT60s tested for the
conditions of R ≤ 1/2 L. “DNN-16ms” (conventional time
sampling strategy) was superior to “DNN-2ms” and “DNN-
4ms” for RT60 ≥ 0.4 sec and 0.6 sec, respectively. In this
case, lower frame shifts could not obtain better performances,
even at the price of increased computational complexities. To
be specific at RT60 = 1 sec, compared with “DNN-16ms”,
’DNN-2ms’ achieved a dramatic PESQ downgrade of 0.19.

3) Frame Shift ≥ 1/2 Frame Length: As shown in Fig. 4,
“DNN-24ms” and “DNN-32ms” did not improve the PESQ
scores for RT60 ≤ 0.2 sec and 0.5 sec, respectively, It was
not surprising because dereverberated speech could not be
reconstructed exactly at an insufficient time sampling rate
that caused aliasing. In addition, “DNN-24ms” improved
PESQ scores relative to “DNN-32ms” by 0.38 on the average
among all RT60s, illustrating better dereverberation perfor-
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Fig. 3. Average PESQ results on the test set at different RT60s for R ≤ 1/2 L.

mance could be achieved with less frame shift, if R > 1/2 L.
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Fig. 4. Average PESQ results on the test set at different RT60s for R ≥ 1/2 L.

Similar results were also obtained from frequency-weighted
segmental SNR (fwSegSNR) [25] and short-time objective
intelligibility (STOI) [26] metrics. With the findings in Figs. 3
and 4, there is a need to adopt an adaptive sampling strategy
for DNN-based dereverberation in order to improve the system
environmental robustness and performance.

B. Frequency Sampling on Unwrapped Phase

For frequency domain sampling, 512, 1024, 2048, 4096-
point DFTs of a short-time audio section were computed, at a
fixed frame shift of 16 ms, to present its impact on unwrapped
phases of reverberant and anechoic speech.

The unwrapped phase was obtained by the algorithm in [27].
If we assumed that there existed a true unwrapped phase spec-
trum, each of the above four was an approximation of the true
one. Fig. 5 shows that the unwrapped phase was dependent on
the DFT size. Specifically, when the DFT size was equal to the
frame length (upper left), the unwrapped phases of anechoic
and reverberant frame were poor approximations [19]. With
more dense frequency sampling rates (upper right, bottom
left, and bottom right), the difference between the unwrapped
phases of anechoic and reverberant speech behaved similarly,
indicating a potential estimation of the true unwrapped phase.

Finally we presented an experiment to highlight the im-
portance of the phase in dereverberation. We combined the
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Fig. 5. Unwrapped phase spectra of anechoic and reverberant frames with
different DFT lengths (512, 1024, 2048, 4096). The window length is 512
(32 ms at a sampling rate of 16 kHz), and the X-axis denotes the normalized
frequency.

TABLE I
AVERAGE PESQ RESULTS ON THE TEST SET AT DIFFERENT RT60S FOR

R = 1/2 L

RT60 (s) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Rev 3.39 2.96 2.63 2.44 2.30 2.20 2.12 2.05 2.00 1.96
DNN-baseline 3.49 3.25 3.08 2.95 2.85 2.77 2.71 2.65 2.59 2.53
DNN-oracle 3.71 3.65 3.55 3.47 3.38 3.30 3.22 3.15 3.07 3.00

estimated magnitude spectra feature with reverberant (‘DNN-
baseline”) and anechoic (“DNN-oracle”) phases to reconstruct
the waveforms for R = 1/2 L, although the anechoic speech’s
phase could not be obtained in practice. Clearly, in the PESQ
comparison in Table I, “DNN-oracle” significantly improved
the performance of “DNN-baseline”. Due to the negligible
difference between unwrapped phases of anechoic and rever-
berant speech with a dense sampling in frequency (shown in
Fig. 5), there is a great potential for DNN to estimate anechoic
speech’s phase from reverberant data, and thus further enhance
the DNN-based dereverberation system.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate the effects of time and fre-
quency sampling rates for STFT and its modifications on
the DNN-based dereverberation performances. We show that
for time domain sampling, denser rates can not obtain better
performances in stronger reverberant environments, even at the
price of increased computational complexities. On the other
hand for frequency domain sampling, the difference between
the unwrapped phases of reverberant and anechoic speech
becomes negligible with a dense sampling in frequency. In
the future, we will conduct research in developing an adaptive
time and frequency sampling strategy to improve the DNN
system environmental robustness and performance.
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