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Abstract—This paper proposes a novel approach to construct
a Deep Neural Network (DNN) based voice conversion (VC)
system, where DNNs are integrated with speaker eigenspace. The
proposed network consists of multiple DNNs and each of them
converts input features to features corresponding to a base of
eigenspace. Training of these DNNs is achieved with the assistance
of Eigenvoice GMM (EVGMM). Experimental evaluations using
one-to-many VC tasks show that the proposed method achieved
better performance compared with that of EVGMM.

I. INTRODUCTION

Voice conversion (VC) is a technique to modify an input
utterance of a speaker so that it sounds as if it is generated by
another speaker while its linguistic content is preserved. This
technique has been directly applied to postprocessing of Text-
to-Speech [1] and indirectly applied to speech enhancement
[2], and so on.

In VC studies, statistical approaches have been often used
for mapping features of a source speaker to those of a
target one. Recently, approaches based on Gaussian mixture
models (GMM) or neural networks (NN) have been widely
investigated [3], [4]. To construct a conversion model on these
approaches, a parallel speech corpus, which consists of the
same sentences read by the source and target speakers, is
required. However, the constructed model can be used only to
modify the speaker identity of that source speaker’s arbitrary
utterances to that of that target speaker. Namely, the model
can be applied only to that specific speaker pair. Hence, re-
searchers pay special attention to performance improvement of
conversion from/to open speakers. For this purpose, parameter
adaptation techniques have been investigated and applied to
GMM-based approaches [5], [6].

Although VC based on deep neural networks (DNN)
achieves some performance improvement compared to GMM-
based VC, since functions of each layer and node in DNN are
difficult to interpret, the constructed DNN is generally low in
its flexibility and can be applied only to a specific speaker pair.
Then, the flexible control of speaker identities in DNN-based
approaches is still a problem to solve.

In VC based on GMM, eigenvoice conversion (EVC) [7] and
tensor-based VC [8] achieve some improvements of its ability
to control speaker identities by using pre-stored data. Also in
VC based on DNN, using pre-stored data for training achives
some performance improvements [10]. In the DNN-based VC,
however, as we noted before, a flexible control of speaker

identity is not yet realize. Then in this paper, we propose a
DNN-based VC method using eigenspace feature. Inspired by
the EVC method, we expect that speech features of any input
speaker can be divided into and characterized by eignespace
components. To realize this concept, in this paper, we propose
an architecture which consists of multiple DNNs to convert
input features of a speaker into their eigenspace components.
Once these DNNs are trained, target features are represented
by the weighted sum of their outputs. These weight parameters
can be estimated in an unsupervised manner.

The remainder of this paper is organized as follows. Section
2 describes EVC. Then, section 3 shows our proposed method
using multiple DNNs and EVGMM. In section 4, experimental
evaluation about one-to-many VC is described. Finally, section
5 concludes this paper.

II. EIGENVOICE CONVERSION (EVC)

In this section, one-to-many EVC is described. Let D, M ,
and s be the dimension of input and output features, the
number of mixture components and the index of a target
speaker, respectively. Feature vectors of a source speaker Xt

and those of the s-th target speaker Y
(s)
t are modeled by

EVGMM. The joint probability density is described as follows:
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N (x;µ,Σ) is a Gaussian distribution with a mean vector
µ and a covariance matrix Σ. αm means the weight for the
m-th component. λ(EV ) denotes the parameters of EVGMM
which are independent of the target speakers.

In EVGMM, S pre-stored speakers are used to derive K
base speakers (K < S), by using a linear combination
of whom, the mean vector of any target speaker can be
represented. In EVGMM, individualities of the target speaker
are controlled by K-dimensional weight vector w(s). It means,
speaker space is represented by K eigenspace supervector
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ered as eigenspace bases.
In a training step, first, target-independent (TI) GMM is

trained using parallel corpora between an anchor speaker
and all pre-stored speakers. Then, using each of the corpora
between the anchor speaker and a pre-stored speaker, target-
dependent (TD) GMMs are trained by updating only their
mean vectors. In this process, the TIGMM is used as an initial
model for TDGMMs. The principal components analysis is
applied to the mean vectors extracted from the constructed
TDGMMs .

Finally, bias supervector b, eigenspace supervector B and
the weight for speaker s, w(s) are determined.

When adapting the EVGMM to arbitrary target speaker, we
estimate the weight vector w by maximum likelihood criterion.
This adaptation means estimating the projection weights to
each eigenspace super vector. This process is carried out in
an unsupervised manner, and it can be realized with a small
amount of data. Because the EVGMM is modeled as joint
probability density, the many-to-many conversion system can
be constructed using the many-to-one EVC and one-to-many
EVC [9].

III. CONSTRUCTION OF THE SPEAKER SPACE
BASED ON DNN

A. Architecture

In EVC, from another viewpoint, the converted features are
a linear combination of generated features which correspond
to eigenbase parameters. Based on this idea, in the proposed
method, DNN is utilized to convert the features of an source
speaker to a set of base speaker features corresponding to that
source speaker. Once the weight corresponding to the target
is determined, the target’s features are obtained as a weighted
sum of outputs from the DNNs. To construct the above DNNs,
the parallel data of the source and the base are required. By
using EVGMM, these parallel data can be prepared rather
easily. Finally, training of these DNNs is achieved by utilizing
the prepared data.

B. Parallel data preparation based on EVGMM

In this section, preparation of parallel data using EVGMM
is described. In EVC, the conversion from the feature from the
source speaker Xt to that of the target speaker Yt is denoted
by equation (4);

F (Xt)=
M∑

m=1

γm,t(Bmw(Y )+b(0)
m +Am(Xt−µ(X)

m )). (4)

γm,t is a posterior probability of the m-th component given the
input features, and Am contains the variance and covariance
matrices as shown below.

γm,t = P (m | Xt, λ
(EV )), (5)
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m Σ(XX)−1
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Equation (4) can be modified as below:
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where w(Y )
k denotes the k-th dimensional element of w(Y ) and

Bm,k denotes the k-th row vector of Bm. In EVC, b(0)
m means

the average vector of all the pre-stored speakers about the
m-th component. Hence, SD(Xt, λ

(EV )) can be regarded as
features that depend on the average speaker, TD(Xt, λ

(EV ))
represents the residuals of the target after subtracting the
average speaker, and converted features F (Xt, λ

(EV )) be-
comes a linear combination of them. TD(Xt, λ

(EV )) and
SD(Xt, λ

(EV )) can be considered as target-dependent and
source-dependent feature components.

As described in Section 2, target speaker individualities are
controlled by K-dimensional weight vector w(s), and w(s)

represents target-dependent weights for each eigenspace basis.
Thereby, source speaker’s feature can be converted to each
eigenspace feature component by using 1-of-K coding instead
of w(Y ). Let a feature of the k-th eigenbase corresnponding
to Xt be Ek

t . It can be represented as below:
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E0
t denotes a bias component corresponding to the averaged

speaker. Finally, The paired data of [Xt,E
k
t ] are utilized as

the parallel data to train the DNN for the k-th eigenbase.

C. Adaptation for a new target speaker

Once the multiple DNNs are trained utilizing the parallel
data prepared in the previous section, features of the source
speaker can be converted to those of arbitrary target speakers
by adapting the weights. Let DNN(k) be the DNN that
functions as converter to the k-th base of eigenspace. Then,
converted features f(Xt) can be represented as below:

f(Xt) =
K∑

k=1

w
(s)
k DNN(k)(Xt) + DNN(0)(Xt), (10)

where DNN(0) converts the input feature to the bias feature.
There are several approaches to determine the weight corre-
sponding to the target. One is to use the weight estimated
from EVGMM directly. Another is the weight is estimated in
a supervised manner using features from the source and the
target.



IV. EXPERIMENTS

A. Experimental conditions

Experimental evaluations of one-to-many VC were carried
out to investigate the effectiveness of the proposed architec-
ture. A male speaker from ATR Japanese speech database
B-set [11] was selected for a source speaker. 450 utterances
were used for training, and 21 utterances included in neither
training nor adaptation data were used for evaluation. As pre-
stored speakers, we used 96 speakers including 48 male and
48 female speakers from a speech corpus called JNAS (the
Japanese Newspaper Article Sentences) [12]. The utterances
of each pre-stored speaker correspond to the 50 sentences
of the 450 training sentences. In adaptation, namely, for
target speakers, 10 speakers of 5 males and 5 females were
used, and each of them uttered 32 sentences. We used 24-
dimensional mel-cepstrum vectors for spectrum representation
(D=24). These were derived by STRAIGHT analysis [13].
Aperiodic components, which are needed to generate mixed
excitation in STRAIGHT, were not converted in this study, and
they were fixed to −30dB at all the frequencies. The power
coefficients and the fundamental frequencies were converted
in a simple manner such that only the mean and the standard
deviation were considered.

Three types of the methods were compared: conventional
GMM, EVC, and the proposed approach using multiple DNNs.
In the conventional GMM method, to achieve the best perfor-
mance, the number of mixtures was varied from 1 to 256 and
the optimal number was selected for each condition of the
number of adaptation sentences.

The conventional GMM was trained in a supervised manner
using adaptation data. In the EVC method, the number of
mixtures was fixed to be 256. In the proposed method, each
DNN which includes 5 layers with 256 units were constructed.
In our method, rectified linear units were used as activation
functions [15], and the DNNs were trained with dropout [14].
In both the EVC and the proposed method, the number of
eigenspace bases was fixed to 96. This is equivalent to the
number of pre-stored speakers.

The conversion performance was evaluated objectively us-
ing mel-cepstral distortion between the converted vectors and
the vectors of the targets. Mel-cepstral distortion is denoted as
follows,

MelCD[dB] =
10

ln 10

√
2ΣD

d=1(mcd − m̄cd)2 (11)

where mcd, m̄cd are the converted feature vectors and those
from the target speaker. In the experiment, the number of target
speakers’ utterances to be used for adapting the models were
varied, then the effectiveness of the methods was investigated.

B. Objective evaluations of one-to-many VC

In this evaluation the conversion performance for the 10
target speakers was evaluated. Fig. 1 shows the results of
the four methods in terms of average mel-cepstral distortion
for the test data as a function of the number of adaptation,
or training sentences (the conversion to 10 target speakers).
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Fig. 1. Results of objective evaluations for 10 target speakers by mel-cepstral
distortion (MCD).

In the proposed method, two conditions of weights were
tested. One was to use the weight estimated from EVGMM
directly (“proposed (unsupervised)” in Fig. 1). Another was
to use the weight estimated by a supervised manner (“pro-
posed (supervised)” in Fig. 1). The proposed methods and
the “EVGMM” significantly outperform “conventional GMM”
when using a small amount of adaptation data less than 8. This
means that prior knowledge underlying the pre-stored data set
is effectively utilized for improvement of the performance.
Compared with “proposed (unsupervised)” and “EVGMM,”
our proposed method in all the conditions of adaptation
outperforms the EVGMM method. Note that the two methods
share the same target-dependent weights. This means that
the proposed method works well to convert input feature to
eigenbases.

On the other hand, compared with “proposed (supervised)”
and “conventional GMM,” “conventional GMM” outperforms
“proposed (supervised)” when 32 adaptation data are available.
It might be due to the low complexity of the proposed
method. Although our proposed method updates only weights,
conventional GMM updates other parameters such as mean
vectors and covariance matrices. Then, to improve the conver-
sion performance, it might be effective that target-dependent
weights are extended to weight vectors when using a large
amount of adaptation data.

C. Subjective evaluations of one-to-many VC

A listening test was carried out to evaluate the naturalness
and the speaker individuality of converted speech. The test was
conducted with subjects who are native Japanese with normal
hearing. To evaluate the naturalness, a paired comparison was
carried out. In this test, pairs of two different types of the
converted samples were presented to the subjects, and then
they judged which sample sounded more natural as native
spoken Japanese. To evaluate speaker individuality, an RAB
test was performed, where pairs of two different types of the
samples were presented after presenting the reference sample
of the target speech. In the tests, from 4 target speakers 2 male
and 2 female, 5 sentences per a speaker were used. To reduce
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Fig. 2. Results of subjective evaluations between the proposed method and
EVGMM. The number in x axis is the number of adaptation (or training)
sentences.
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Fig. 3. Results of subjective evaluations between the proposed method and
GMM. The number in x axis is the number of adaptation (or training)
sentences.

the workload of the subjects, the pairs included the proposed
method and those including the conventional methods were
used in the tests. Then, the number of sample pairs evaluated
by each subject was 80 in each test.

Fig. 2 and Fig. 3 shows the results of the three methods
evaluated about the naturalness and individuality. In this tests,
the number of adaptation, or training sentences were fixed to
2 or 32. When using 2 sentences, the “Proposed” outperforms
“GMM” in both naturalness and speaker individuality. When
using 32 adaptation data, “GMM” has the best performance
in both naturalness and speaker individuality. Compared with
the EVC method, the performance of the proposed method
is comparable or slightly better to that of the EVC except
in naturalness when using 2 adaptation data. Because the
performance of the proposed method is comparable or slightly
better to that of the EVC when using 32 adaptation data, the
proposed method works well to convert to eigenbases. So this
result might be caused by lowness of the weight estimation
performance.

V. CONCLUSION

In this paper, we have proposed a new architecture for the
arbitrary speaker conversion based on DNN that is inspired by
EVC. The proposed network consists of multiple DNNs and
each of them converts input features to features corresponding
to a base of eigenspace. Training of these DNNs is achieved
with the assistance of EVGMM. In the adaptation step, the
weights of a new target speaker for summing up multiple

outputs from the proposed network are estimated. Experimen-
tal evaluation demonstrates the effectiveness of the proposed
method.

We are also planning to apply our method to many-to-
many VC. In previous research[10], a DNN trained by using
many-to-one parallel data shows some improvements of its
generalization ability. Then, if DNNs to divide source features
into eigenspace features are trained by using multi speakers
such as pre-stored speakers, the proposed method can deal with
open source speakers. In addition, if DNN’s parameters cor-
responding to bases of eigenspace was fixed, target-dependent
weights can be estimated by using target speaker’s features as
both the source and target. This estimation is carried out by
an unsupervised manner such as an auto-encoder.
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