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Abstract—Virtual military training systems have received con-
siderable attention as a possible substitute for conventional
real military training. In our previous work, human action
recognition system using multiple Kinects (HARS-MK) has been
implemented as a prototype of virtual military training simulator.
However, the classification accuracy of HARS-MK is not enough
to be utilized for virtual military training simulator. In addition,
the experiments are carried out under just two simple action
types; walking and crouching walking. In order to overcome
these limitations, in this paper, we propose an enhanced multi-
view human action recognition system (EM-HARS). Compared
to HARS-MK, in EM-HARS, feature extractor is enhanced
by employing covariance descriptor. In addition, the feasibility
test of EM-HARS is conducted under various human actions
including military training actions which are newly captured.
The experiment results show that EM-HARS achieves higher
classification accuracy than that of HARS-MK.

I. INTRODUCTION

Recently, virtual reality technology has gained more atten-
tion in various fields including game, military training, edu-
cation, and rehabilitation [1]–[4], since 3D visual discomfort
problems have been solved [5]–[12]. In the case of military
training, military industry is focusing on replacing real military
training with virtual military training to improve its effect, and
to reduce training cost. To achieve this goal, it is required to
implement a virtual military training system in which high
stability and vivid virtual military training environment have
to be provided to users. A famous example of virtual military
training system is the dismounted soldier training system
(DSTS) in United States army [13]. In DSTS, user has to
wear various wearable devices including motion sensors for
posture tracking. Although wearable motion sensors provide
accurate position values, the main disadvantage of wearable
motion sensors is error accumulation over time. In general,
since soldiers participate in a military training in a long
time, wearable motion sensors-based posture tracking methods
which have error accumulation problem are not appropriate for
virtual military training system.

For avoiding the error accumulation problem, the authors of
[14]–[16] proposed human action recognition methods based
on single camera. However, since these methods in [14]–
[16] are vulnerable to occlusion, it is difficult to apply these
methods to virtual military training system. To overcome
the occlusion problem, multi-view human action recognition
methods using color and depth data are proposed in [17]
and [18]. In addition, the authors of [19] proposed a multi-
view human action recognition method using color, depth, and

skeleton data. Many researches on human action recognition
including [16]–[19] have been studied by using Microsoft
Kinect due to its cheap cost and convenience in use. Further-
more, Kinect provides real-time skeleton data, and no markers
are necessary to be attached to user. Kinect captures user
under the assumption that the user looks the Kinect in the
face. Therefore, if user does not look Kinect in the face, the
Kinect may provide imprecise skeleton data of the user. In
multi-view human action recognition system, it is impossible
for user to look all Kinects in the face at the same time.
In addition, since the imprecise skeleton data may lead to
degradation of classification accuracy, integration of skeletons
is one of the most challenging issues in multi-view human
action recognition systems.

To address this problem, we have developed a weighted inte-
gration method [20]. Skeleton data obtained from each Kinect
can be integrated more accurately by using the weighted
integration method in which a higher weight value is assigned
to skeleton data obtained from the Kinect which faces user.
Based on previous study in [20], we have implemented a hu-
man action recognition system using multiple Kinects (HARS-
MK) [21]. In order to recognize human actions, snapshot and
temporal features are extracted from skeleton data sequences.
Based on the snapshot and temporal features, the classifier
model is trained by using support vector machine (SVM).
The average accuracy rate of HARS-MK are about 88.375%
and 88.875% for walking and crouch walking, respectively.
However, the average accuracy rate is not sufficient to utilize
HARS-MK as a virtual military training system. In addition,
the number of types of action tested in the experiments is only
two.

Therefore, in this paper, we propose an enhanced multi-
view human action recognition system (EM-HARS) which is
the improved version of HARS-MK. In order to improve the
classification accuracy, we enhance temporal feature extractor
by employing covariance descriptors at three-dimensional (3D)
joint locations [22]. In addition, we newly capture multi-view
skeleton data of various human actions related with military
training. Using the new dataset of skeleton data sequences, we
demonstrate the feasibility of the proposed EM-HARS.

The remainder of this paper is organized as follows. Section
II presents the system architecture of EM-HARS. Section III
shows the experimental results and discusses the feasibility of
EM-HARS as a virtual military training system. Conclusion
is given in Section IV.
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Fig. 1. Block diagram of the proposed EM-HARS.
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Fig. 2. Kinects configuration in EM-HARS.

II. SYSTEM ARCHITECTURE

This section describes the system architecture of EM-
HARS. Fig. 1 shows a block diagram of EM-HARS. In EM-
HARS, six Kinects, which are arranged in a ring with a radius
of 3 m and 60◦ separated, are used to capture the whole user’s
body as shown in Fig. 2. Each Kinect provides skeleton data
of user in real-time. The skeleton data consists of a set of
25 joints and provides 3D coordinates for each joints. Table I
shows the set of joints provided from Kinect.

A. Skeleton Integration

As shown in Fig. 2, since the location of each Kinect differs
from each other, the coordinate systems of Kinects differ from
each other. Therefore, it is necessary to calibrate them to a
world coordinate system. After the calibration is complete,

TABLE I
A SET OF JOINTS PROVIDED FROM KINECT.

Name Join Index (j) Name Joint Index (j)
Spine Base 0 Knee Left 13
Spine Mid 1 Ankle Left 14

Neck 2 Foot Left 15
Head 3 Hip Right 16

Shoulder Left 4 Knee Right 17
Elbow Left 5 Ankle Right 18
Wrist Left 6 Foot Right 19
Hand Left 7 Spine Shoulder 20

Shoulder Right 8 Hand Tip Left 21
Elbow Right 9 Thumb Left 22
Wrist Right 10 Hand Tip Right 23
Hand Right 11 Thumb Right 24

Hip Left 12

TABLE II
VALUES OF w1(·) ACCORDING TO TRACKING STATES.

Tracking State Tracked Not-tracked Inferred
w1(·) 1 0 0.5

the skeleton data have to be transformed into the world
coordinate system. By referring to the calibration method of
[23], each Kinect coordinate system is transformed into the
world coordinate system by[

X(w) Y (w) Z(w)
]T

= R(i)
[
X(i) Y (i) Z(i)

]T
+ t(i) (1)

where X(w), Y (w) and Z(w) are coordinates in the world
coordinate system, R(i) is the rotation matrix of the ith
Kinect, X(i), Y (i) and Z(i) are coordinates in the 3D Cartesian
coordinate system of the ith Kinect, and t(i) is the translation
matrix of the ith Kinect.

In our previous work [20], we have developed a front vector
tracing algorithm for tracking the front of a skeleton, and a
weighted integration method for achieving accurate skeleton
integration. In this paper, in order to improve performance
of multi-view skeleton integration, the front vector tracking
algorithm and the weighted integration method are employed
in EM-HARS.

Let P∗j =
[
x∗j y∗j z∗j

]
be a vector representation of an

optimal jth joint position after skeleton integration. Then, P∗j
is can be obtained by solving an optimization problem as
follows:

min
Pj

∑
i∈K

w1

(
s
(i)
j

)
· w2

(
d
(i)
j

)
· ‖ Pj −P

(i)
j ‖ (2)

where Pj = [xj yj zj ] is a vector representation of the
possible joint positions, K is the set of indices of Kinects,
s
(i)
j is the tracking state of the jth joint provided from the ith

Kinect, d(i)j is the distance between the jth joint provided from
the ith Kinect and the ith Kinect, w1(·) and w2(·) are weight
functions whose values are determined according to s

(i)
j and

d
(i)
j , respectively, ‖ · ‖ indicates the Euclidean distance, and

P
(i)
j =

[
x
(i)
j y

(i)
j z

(i)
j

]
is a vector representation of the jth

joint position provided by ith Kinect.
The tracking state s

(i)
j provided via Kinect software devel-

opment kit (SDK) is categorized as Tracked, Not-tracked, and
Inferred. If the jth joint position data is obtained accurately,
s
(i)
j becomes Tracked. s(i)j becomes Not-tracked when the jth

joint position data cannot be obtained. In addition, if the jth
joint is occluded, s(i)j becomes Inferred. Table II shows the
values of w1(·) according to s

(i)
j .

In general, the accuracy of a joint position data is inversely
proportional to the distance between the joint and a Kinect
[24]. The authors of [25] measured the noise in the joint
position data according to distance from Kinect. The measure-
ment was performed in the range of 1.2−3.5 m from Kinect.
In addition, it is shown that the noise can be fitted to the
function 0.4946e0.7·d

(i)
j . A minimum (maximum) value of the



TABLE III
DESCRIPTION OF Angles.

Kinematic Chain Angle Notation
Spine Base - Spine Mid - Spine Shoulder Yaw A1

Spine Shoulder - Shoulder Left - Elbow Left Roll A2

Yaw A3

Spine Shoulder - Shoulder Right - Elbow Right Roll A4

Yaw A5

Shoulder Left - Elbow Left - Wrist Left Roll A6

Yaw A7

Shoulder Right - Elbow Right - Wrist Right Roll A8

Yaw A9

Spine Base - Hip Left - Knee Left Roll A10

Yaw A11

Spine Base - Hip Right - Knee Right Roll A12

Yaw A13

Hip Left - Knee Left - Ankle Left Roll A14

Yaw A15

Hip Right - Knee Right - Ankle Right Roll A16

Yaw A17

average noise is 1.1456 (5.7315) at 1.2 (3.5) meters. By using
these values, the noise is normalized. Then, w2(·) is defined
as follows:

w2(d
(i)
j ) = 1−

(
0.4946e0.7·d

(i)
j − 1.1456

5.7315− 1.1456

)
︸ ︷︷ ︸

= normalized noise

. (3)

B. Feature Extraction

In EM-HARS, the feature extraction is done in two stages;
snapshot and enhanced temporal feature extractions. The
output of the snapshot feature extractor consists of Joint
Velocities, Angles, and Angular Velocities.

Joint Velocities are calculated as the difference between
current and previous joint position vectors which are captured
from two consecutive frames, respectively. Let Vj [n] be a
vector representation of a joint velocity of the jth joint at the
nth frame. Then, Vj [n] can be computed as follows:

Vj [n] =
Pj [n]−Pj [n− 1]

∆n
, j ∈ {1, · · · , 25}, (4)

where ∆n is a time interval between the nth and (n − 1)th
frames. Here, ∆n is set to 1/30 ms because the frame rate of
Kinect is 30 frames per second.

Angles mean Tait-Bryan angles (also known as Cardan
angles or nautical angles) and are calculated from three
consecutive joints (kinematic chain). Let l ∈ {1, · · · , 17} be
a index of angle, and Al be a value of the lth angle. Table III
shows the details of description of Angles.

Angular Velocities are computed as the difference between
current and previous angles at two consecutive frames. Let
Ul[n] be a angular velocity of the lth angle at the nth frame.
Then Ul[n] can be computed as follows:

Ul[n] =
Al[n]−Al[n− 1]

∆n
, l ∈ {1, · · · , 17}. (5)

The dimensions of Joint Velocities, Angles, and Angular
Velocities are 75, 17, and 17, respectively. In other words,
the dimension of snapshot feature vectors is 109.

In the enhanced temporal feature extractor, the snapshot
features over M frames are stored in a buffer to capture
temporal characteristics of human action. The output of the
enhanced temporal feature extractor are Average of Joint
Velocities, Average of Angles, Average of Angular Velocities,
and Covariance of Joints.

Average of Joint Velocities are computed as follows:

Vj [n] =
1

M

n∑
m=n−(M−1)

Vj [m], j ∈ {1, · · · , 25}. (6)

Average of Angles are calculated as follows:

Al[n] =
1

M

n∑
m=n−(M−1)

Al[m], l ∈ {1, · · · , 17}. (7)

Average of Angular Velocities are calculated as follows:

U l[n] =
1

M

n∑
m=n−(M−1)

Ul[m], l ∈ {1, · · · , 17}. (8)

Covariance of Joints are calculated as follows:

Cov (S[n]) =
1

M

n∑
m=n−(M−1)

[S[m]− S[n]]T · [S[m]− S[n]],

(9)
where S[m] = [P1[m] P2[m] · · ·P25[m]] is a vector ex-
pressing the positions of 25 joints at the mth frame, S[n] =
S(n−(M−1))+···+S[n−1]+S[n]

M is the sample mean from the
n − (M − 1)th frame to the nth frame, and the super-
script T indicates transpose. Since Cov (S[n]) is a symmetric
matrix with dimension 75 × 75, it is efficient to use the
upper triangle of Cov(S[n]) as temporal features. However,
in this case, the number of elements of the upper triangle
of Cov(S[n]) is 75(75 + 1)/2 = 2850. In other words, the
dimension of Covariance of Joints is 2850, which makes
SVM classifier model unsuitable for real-time virtual military
training system. In order to reduce the feature dimension
of Covariance of Joints, we select 6 joints (Elbow Left,
Elbow Right, Wrist Left, Wrist Right, Hand Left, and Hand
Right) among 25 joints. Therefore, in (9), 1× 75-dimensional
S[m] = [P1[m] · · ·P25[m]] becomes 1 × 18-dimensional
S[m] = [P5[m] P6[m] P7[m] P9[m] P10[m] P11[m]]. In
addition, the number of elements of the upper triangle of
Cov(S[n]) is reduced from 2850 to 18(18 + 1)/2 = 171.

After snapshot and enhanced temporal feature extractions,
the dimension of feature vector which is utilized for training
SVM classifier model is 109 + 109 + 171 = 389.

III. EXPERIMENTAL EVALUATION AND RESULTS

In this section, we evaluate the proposed EM-HARS using
newly captured human action datasets. This dataset was cap-
tured by using six Kinects which are configured as shown in
Fig. 2. In addition, this dataset consists of 19 human actions
performed by 4 different subjects. Each subject performed
every action nine or ten times. SVM with radial basis kernel is
utilized for classification. In order to train the SVM classifier



TABLE IV
CLASSIFICATION ACCURACY RESULTS FOR EXPERIMENTS.

Action Type EM-HARS HARS-MK
Change Weapon Pistol 93.52 91.33
Change Weapon Rifle 91.34 89.75

Change Weapon Grenade 92.19 90.47
Change Weapon Sword 92.43 90.20

Throw High Left 91.62 90.75
Throw High Right 91.73 90.33
Throw Low Left 93.47 91.27

Throw Low Right 93.68 92.01
Reload Pistol 90.79 86.75
Reload Rifle 89.82 85.33
Shoot Sword 92.03 90.87

Lean Left 88.43 87.25
Lean Right 89.02 87.14

Pick Up 91.70 89.25
Pick Down 93.37 91.50

Open 92.08 89.73
Close 91.58 89.35

Telescope 92.72 90.26
Gasmask 93.70 91.50

model, data sequences of three subjects were used, and those
of the remaining subject are used for testing.

Table IV shows the classification accuracy results for our
experiments. The figures shown in Table IV are expressed
as a percentage. The average classification accuracy of the
proposed EM-HARS is roughly 91.85%. On the other hand,
the average classification accuracy of conventional HARS-MK
is approximately 89.74%. As shown in Table IV, the proposed
EM-HARS achieves a higher average classification accuracy
for all human action types than that of HARS-MK. These
results suggest that the proposed EM-HARS is more suitable
as a virtual military training simulator than HARS-MK.

IV. CONCLUSION

In this paper, we proposed EM-HARS for virtual training
simulator. Compared to our previous HARS-MK, in EM-
HARS, temporal feature extractor which captures the temporal
characteristics human action is enhanced by employing Co-
variance of Joints. Also we newly captured skeleton data of 19
human actions including military training actions. In order to
classify human actions, SVM was applied to train the classifier
model. The experiment results demonstrated the feasibility of
EM-HARS as a virtual military training system.
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