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Abstract—Recently, deep and/or recurrent neural networks
(DNNs/RNNs) have been employed for voice conversion, and
have significantly improved the performance of converted speech.
However, DNNs/RNNs generally require a large amount of
parallel training data (e.g., hundreds of utterances) from source
and target speakers. It is expensive to collect such a large amount
of data, and impossible in some applications, such as cross-lingual
conversion. To solve this problem, we propose to use average
voice model and i-vectors for long short-term memory (LSTM)
based voice conversion, which does not require parallel data from
source and target speakers. The average voice model is trained
using other speakers’ data, and the i-vectors, a compact vector
representing the identities of source and target speakers, are
extracted independently. Subjective evaluation has confirmed the
effectiveness of the proposed approach.

Index Terms: voice conversion, nonparallel training, average
voice model, i-vector, long short-term memory

I. INTRODUCTION

Voice conversion (VC) is a technique to modify the voice
spoken by one speaker (source) so that it sounds like it is
spoken by another speaker (target) while retaining its linguistic
information [1] [2]. VC technology can be applied to various
tasks, such as personalized text-to-speech (TTS) synthesis
system [3], emotion conversion [4], speech enhancement [5],
movie dubbing, and other entertainment applications.

Many statistical parametric approaches have been studied
so far, mainly including linear and nonlinear feature map-
pings. Gaussian mixture models (GMMs) were proposed to
implement weighted linear conversion functions [6]. Toda et
al. [7] improved GMM-based method using dynamic features
and the global variance (GV). Alternatively, dynamic kernel
partial least squares (DKPLS) technique was proposed to
model nonlinearity of the inherent time-dependency between
speech features [8]. Non-parametric approaches have also been
proposed such as exemplar-based non-negative matrix factor-
ization (NMF) [9] [10], which directly used the target speech
exemplars to synthesize the converted speech. However, most
of the conventional methods, such as GMM, DKPLS and
NMF, are based on “shallow” voice conversion architectures,
in which the spectral feature of source speech are converted
directly in the original feature space.

To capture the characteristics of speech more precisely, it
might be more appropriate to have several hidden layers in

the conversion architecture. Deep neural networks (DNNs),
aiming to learn hierarchical feature mappings layer by lay-
er, match this goal perfectly. As an early attempt, Desai
et al. [11] have shown that neural network with multiple
layers significantly outperforms GMM in both objective and
subjective evaluations. Nakashika et al. [12] proposed a voice
conversion method using deep belief nets (DBNs) in a high
order eigenspace. Chen et al. [13] have also confirmed the
superior performance of DNNs in the voice conversion task.
Recently, in order to take advantage of the speech context
information, Sun et al. [14] proposed a deep bidirectional
long short-term memory (DBLSTM) architecture for voice
conversion, which elegantly captures both frame-wised and
long-range correlations between source and target features.
Their work demonstrates that DBLSTM achieves superior
performance than a feed-forward DNN. However, the above
mentioned methods require a set of parallel data' from source
and target speakers to train the mapping function. To achieve
reasonable performance, the number of sentence pairs may
expand to several hundreds [14]. It is expensive and even
impossible to collect such parallel data in real applications,
and the requirement of parallel data becomes a bottleneck to
the practical use of voice conversion.

There have been some approaches that do not require
parallel data between the source and target speaker for con-
version. During model training, they usually borrow parallel
data from speakers at hand (e.g., a corpus available with
multiple speakers), to train a basic mapping function. Then
the speech data from a new source-target speaker pair, which
is unnecessarily paralleled, is used to adapt the base model.
To this end, approaches can be approximately grouped into
two categories: maximum a posterior (MAP) adaptation and
eigenvoice conversion (EVC). In MAP adaptation [15] [16],
target speech is used to adapt a source GMM for voice conver-
sion without parallel data. Toda et al. [17] introduced eigen-
voice conversion, originally proposed for speaker adaptation in
speech recognition [18], into voice conversion, by adapting the
conversion model using many pre-stored speakers’ voices. In
order to further improve the performance of converted speech
with non-parallel data, Ohtani et al. [19] proposed an adaptive

IThe source and target speakers read the same sentence, i.e., a parallel pair.
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Fig. 1. The framework of DBLSTM based voice conversion approach.

training method for eigenvoice Gaussian mixture model (EV-
GMM).

In this paper, following the success of deep bidirectional
LSTM, we propose to use average voice model (AVM) and
i-vectors for NN-based voice conversion without the source-
target parallel data. Specifically, inspired by the previous work
on GMM adaptation, we use a large amount of parallel utter-
ances from other speakers as prior data to train a DBLSTM-
based average voice model (AVM). But different in AVM train-
ing, we augment the source spectrum with source and target
speaker identity vectors as network input, to learn a universal
mapping to the spectrum of the target speaker. In this work,
speaker identity is represented by i-vector’, a low-dimensional
speaker-specific vector extracted in a text-independent fashion.
Without an adaptation stage, the AVM-+i-vector model can be
directly used for conversion: given the spectrum of a new
source speaker and his/her i-vector, along with the i-vector
of the new target speaker, the network directly generates the
corresponding spectrum for the new target speaker. Subjective
evaluation has confirmed the effectiveness of our proposed
approach.

II. DBLSTM FOR VOICE CONVERSION

The flow diagram of a typical DBLSTM-based voice con-
version system is shown in Fig. 1 [14]. In this study, we use
STRAIGHT [21] to extract mel-cepstral coefficients (MCCs)
for source and target speech, respectively. Usually, a voice
conversion system is composed of a training and a conversion
stage. During the training process, we use a frame alignment
method, i.e., dynamic time warping (DTW), to get the parallel
utterances between the source and target speakers. Then, the
DBLSTM model is trained by the back-propagation through
time (BPTT) algorithm. A nonlinear relationship between
aligned spectral features (MCCs) of source and target speech
is thus learned. This can be formulated as a nonlinear mapping
function F'(-) between the source spectral feature X and target
spectral feature Y

Y = F(X). (1)

2I-vectors are widely used in speaker recognition [20].
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Fig. 2. The framework of average voice model with augmented i-vector input.

In the conversion stage, given the MCCs feature X of a new
speech sequence from the source speaker, the corresponding
converted MCCs Y for the target speaker are generated by
the trained model in a frame-wised way. Finally, we use
STRAIGHT as the vocoder to reconstruct the speech from
the converted MCCs. Previous study has shown that this
straightforward conversion approach achieves superior perfor-
mance [14].

III. PROPOSED: AVM WITH AUGMENTED I-VECTORS
A. Basic Framework

The overall framework of our proposed approach is present-
ed in Fig. 2, in which we augment i-vectors to the input feature
in an average voice model. The network structure is actually
the same with Fig. 1, i.e., using a DBLSTM as the mapping
tool [22]. But the major differences lie in the network input
and the way we train and use the model.

o The network input: In our proposed approach, i-vectors
of the source and target speakers are augmented to the
spectral feature of the source speech, which are used to
capture the identity information of the source and target
speakers.

e The model training: In the conventional DBLSTM
approach, parallel utterances between source and target
speakers are needed to train a specific conversion model.
In contrast, in the proposed approach, we use parallel data
of many other speakers to train an average voice model
with i-vector inputs. We do not need the parallel data
between the source and target speakers to train or re-train
this model. In the conversion stage, given the spectrum
of a new source speaker and his/her i-vector, along with
the i-vector of the new target speaker, the average voice
model directly generates the corresponding spectrum for
the new target speaker.

In general, by combining the average voice model and
the speaker identity information, we do not need the parallel
utterances between the desired speakers in the model training.
Thus, we can convert speech easily from a new source speaker
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Fig. 3. The flow diagram of i-vector extraction.

to a new target speaker without their parallel utterances,
which makes voice conversion more convenient in practical
applications.

B. I-vector Extraction

In this work, we employ the framework introduced in [23]
to generate i-vectors, which is shown in Fig. 3. I-vector is a
low-dimensional vector representing speaker individuality and
has been widely used in speaker recognition. In [20], a speaker
super-vector (i.e., GMM super-vector) is projected onto a low-
dimensional subspace based on factor analysis, resulting in an
i-vector. Specifically, given an utterance from a single speaker,
a speaker-dependent GMM super-vector is represented as

M=m+Tw, 2)

where m is the speaker-independent super-vector’ generated
from a universal background model (UBM), a large GMM
trained to represent the speaker-independent distribution of
speech features. In other words, the UBM represents the
inner structure of the whole acoustic space of a large number
of speakers. M is the mean super-vector of the speaker-
dependent GMM model adapted from the UBM, while T is
the total variability matrix, which represents the speaker space
on the background data. The speaker space is also called total
variability subspace (TVS). Here, w is a random vector having
a standard normal distribution N (0, I'), which is the so-called
identity vector or i-vector for short, controlling the speaker
individuality.

To make the i-vector more robust and compact, linear
discriminant analysis (LDA) [24] is usually adopted. Given the
i-vector generator mentioned above and the speaker identity
labels, LDA aims to maximize the inter-class (inter-speaker)
variance and minimize the intra-class (intra-speaker) variance,
which has shown to be a key factor in the use of i-vector in s-
peaker recognition [25]. Finally, a robust and low-dimensional
i-vector is generated for an utterance from a certain speaker.

C. The Whole Process

According to the framework in Fig. 2, we summarize the
whole process for using i-vectors in the average voice model.
The training stage is as follows.

« Data preparation: Prepare a corpus with many speakers
for AVM training, in which parallel utterances between
source and target speakers are needed. But different
source-target speaker pairs do not need speak the same
set of sentences.

3By super-vector, we mean the dimention of the vector is quite large, e.g.,
512 if 512 Gaussian mixtures are used in the UBM.

o Feature extraction: Use the vocoder (e.g., STRAIGHT)
and the i-vector extractor to obtain the spectral features
and the i-vectors of each source-target utterance pair in
the corpus, respectively.

e AVM training: Following the framework in Fig. 2, train
the DBLSTM model through BPTT using the DTW
aligned parallel data. Note that the input of the network
is the combination of spectral feature and the source and
target i-vectors. Each speaker uses a fixed i-vector, which
is averaged from the training utterances of the speaker.

The voice conversion process is quite straightforward. Given

a new source-target speaker pair, which is not included in
the AVM training, we firstly extract the spectral feature of
source speech, source and target speaker i-vectors. The source
and target i-vectors are the average i-vectors calculated on the
sentences from the training and validation data sets. Please
note that these sentences are not necessarily parallelled. The
source spectral feature and the source and target i-vectors are
fed into the DBLSTM model, resulting in the target spectral
feature. The vocoder finally re-synthesizes the target speech
through the predicted spectral feature.

IV. EXPERIMENTAL SETUP
A. I-vector Extractor

To extract reasonable i-vectors, we need speech data from
many speakers to train UBM, TVS and LDA models. To
this end, we use four corpus, including the wall street jour-
nal corpora (WSJO+WSJ1) [26], British English data (WSJ-
CAM) [27] and the voice cloning toolkit (VCTK)* corpus.
Speech data are down-sampled to 16kHz and there are 647 s-
peakers in total. I-vectors are extracted from gender-dependent
GMM-UBMs. In the model training, 19-dimensional mel-
frequency cepstral coefficients (MFCCs) and log-energy, with
corresponding delta and delta-delta coefficients are extracted,
and the window size is 25ms with a frame shift of 10ms. We
use a simple energy-based voice activity detector (VAD) to
remove silence frames before modeling training. The GMM
has 512 Gaussian components and we calculate the sufficient
statistics from UBM for every 10 sentences, which are used to
extract one 400-dimensional i-vector. After LDA, we finally
obtain the 17-dimensional i-vector together with one dimen-
sion of gender information. Each utterance of one specific
speaker will generate a corresponding i-vector, and then we
take the average of all the individual i-vectors for the speaker
to form a single i-vector for identity representation. In our
study, we use MSR identity toolbox [28] to extract i-vectors.

B. AVM Training and Voice Conversion

We use the VCTK corpus for voice conversion experiments,
which contains speech data from 109 speakers, including 62
female and 47 male speakers. Each speaker originally has
about 400 utterances, but we finally pick up about 30 parallel
utterances between each inter-gender or intra-gender speaker
pair. We aim to build inter-gender and intra-gender conversion

“http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html



TABLE I
THE NUMBER OF SPEAKERS AND THE NUMBER OF UTTERANCES IN
TRAINING AND VALIDATION SETS FOR AVM TRAINING.

TABLE II
THE MCD OF DIFFERENT VOICE CONVERSION SYSTEMS FOR
INTER-GENDER AND INTRA-GENDER CONVERSION.

Conversion Female-Male | Female-Female | Male-Female ‘ Male—Male‘ Conversion Female-Male |Female-Female| Male-Female | Male-Male
Source speakers 59 27 43 21 Testing speaker pair [p362 — p227|p362 — p351|p226 — p351|p226 — p227
Target speakers 44 29 59 22 Source-Target 8.121 7.073 8.140 7.376
Utterances in training set 4063 4923 4828 4902 DBLSTM 6.515 5.725 6.015 6.001
Utterances in validation set 748 748 748 748 DBSLTM+RM 6.081 5.216 5.487 5.582
DBSLTM+AVM-I-vector| 6.628 5.774 5.868 6.073
DBLSTM+AVM 6.410 5.688 5.879 6.085

AVM with i-vectors. The number of source and target speakers
and the number of utterances in the training and validation
sets for AVM training are shown in TABLE I. Please note that
Female-Male, Female-Female, Male-Female, Male-Male stand
for conversions between female to male, female to female,
male to female, and male to male respectively.

DTW is used to align the parallel data. STRAIGHT is used
to extracted 50-dimensional mel-cepstral coefficients (MCCs),
513-dimensional aperiodic component and Fp. The 16KHz
acoustic signal is windowed by 25ms and the frame shift
is 5ms. The 49-dimensional (except for the energy dimen-
sion) MCCs are used in the DBLSTM conversions, while
LogFy is linearly converted by equalizing the mean and the
standard deviation of the source and target speech, and the
aperiodic component of the source speech is directly copied to
synthesize the converted speech. The training and validation
samples are normalized to zero mean and unit variance for
each dimension before DBLSTM training. A C++ CUDA-
enabled library named CURRENNT? [29] is used to train the
DBLSTM models with a learning rate of 1.0 * 1075,

We conduct experiments for inter-gender and intra-gender
voice conversion from a source speaker to a target speaker
who are not included in the speakers for average voice
model training. Meanwhile, 10 utterances from the source are
selected as the testing data.

C. VC Systems

We implement four systems for experimentation:

o DBLSTM: The baseline approach is depicted in Fig. 1.
We use 16 sentences as training data and 2 sentences as
validation data. The input and output of the network are
both spectral features (49-dimensional MCCs), and the
number of units in each layer is [49 96 128 96 49].

« DBSLTM+AVM: We use parallel utterances from mul-
tiple speakers in the training set to train a source-to-
target (e.g., female-to-male, female-to-female) average
conversion model. The input/output and network setting
are the same with the DBLSTM system.

« DBLSTM+RM: We retrain the DBLSTM+AVM model
using some paralleled data from the testing source-target
speaker pair (e.g., p362 — p227). A set of 10 sentences
are used for model retraining and 2 sentences for valida-
tion. We call this model as retrained model (RM).

Shttps://sourceforge.net/projects/currennt/

o« DBSLTM+AVM-+I-vector: The proposed approach is
shown in Fig. 2. The dimension of the input feature is 83
(49-dimensional MCCs + 17-dimensional source i-vector
+ 17-dimensional target i-vector), while the output feature
is the 49-dimensional MCCs of the target speech. The
number of units in each layer in the DBLSTM is [83 96
128 96 49].

V. OBJECTIVE RESULTS

We use mel-cepstral distortion (MCD) to objectively mea-
sure the spectral distortion between the converted and the
target speech [7] [11]:

N

10
2 (Ca— C5m)? 3)
d=1

where Cy and C3°" are the d-th coefficient of the target and
converted MCCs, respectively; N is the dimension of MCCs
(except for energy dimension). Lower MCD means smaller
distortion.

The MCD scores of the four voice conversion systems
for inter-gender and intra-gender conversion are shown in
TABLE II. We note that the lowest MCD is achieved by
DBLSTM+RM. This means retraining using source-target
paralleled data on an average voice model is beneficial. It is
surprising that, serving as an average model, DBLSTM+AVM
achieves even lower MCD than the direct conversion model
— DBLSTM. This is probable because the training data for
direct conversion DBLSTM is quite limited. However, in
real applications, we cannot have many utterances for model
training. We also notice that the AVM with augmented i-
vectors (DBLSTM+AVM-+I-vector) keeps almost the same or
increases the MCD a little bit as compared with DBSLT-
M+AVM.

VI. SUBJECTIVE RESULTS

We conduct subjective listening tests® for Female-Male
conversion to compare the four systems (DBLSTM, DBLST-
M+RM, DBLSTM+AVM-I-vector and DBLSTM+AVM). We
carry out AB and ABX preference tests for quality and
similarity respectively on three pairs: DBLSTM+RM vs. D-
BLSTM, DBLSTM+AVM-+lI-vector vs. DBLSTM+RM, and

6 Alternatively, an automatic voice conversion evaluation strategy [30] may
be used.
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Fig. 4. AB preference test for speech quality. The p-values of the three pairs
are 6.69 % 1019, 0.24, and 1.39 % 108, respectively.

N/P ‘DBLSTM
17.1% 6.2%
o | U
19.6% 44.2%
N/P ‘ DBLSTM+AVM
29.2% 15.8%

Fig. 5. ABX preference test for speaker similarity. The p-values of the three
pairs are 1.23 + 10717, 0.21 and 4.31 % 10~8, respectively.

DBLSTM+AVM-+lI-vector vs. DBLSTM+AVM. We recruit 20
listeners to evaluate 10 sentences, resulting in 200 votes for
each system. The quality and similarity preference bars are
shown in Fig. 4 and Fig. 5, respectively.

A. DBLSTM+RM vs. DBLSTM

As a sanity check, we would like to see if retraining using
source-target paralleled data on an average voice model is
beneficial (as we can see an MCD decrease in objective evalua-
tion). From Fig. 4 and Fig. 5, it is obvious that DBLSTM+RM
achieves significantly better preference than DBLSTM in both
quality and similarity (confirmed by one-way ANOVA analysis
of variance). This confirms that an average voice model is
quite useful to reduce the amount of parallel training data and
to improve the performance of the converted speech.

B. DBLSTM+AVM+I-vector vs. DBLSTM+RM

From the second bar in Fig. 4 and Fig. 5, we can see that
DBLSTM+AVM-lI-vector achieves a little bit better preference
than DBLSTM+RM in quality but with opposite observation
in similarity. One-way ANOVA analysis of variance shows
that the differences between the two systems are not sig-
nificant both in quality and similarity. This means that the
DBLSTM+AVM-+I-vector approach can achieve almost equiv-
alent performance with DBLSTM+RM that needs parallel data
to retain an average model.

C. DBLSTM+AVM+I-vector vs. DBLSTM+AVM

Finally, as another sanity check, we want to see if an
AVM without i-vectors can perform equally with an AVM
with i-vectors. From the third bar in the two figures (Fig. 4
and Fig. 5), we can see that the DBLSTM-+AVM-+I-vector
achieves significant better performance than DBLSTM+AVM
both in quality and similarity (the differences are significant).
This indicates that the average voice model without i-vector
information cannot capture the characteristics of a specific
speaker, leading to poor quality and similarity in the converted
speech. On the contrary, using i-vectors can capture the
speaker identity and achieve high quality at the same time.

We also notice that the subjective results are not quite
consistent with the objective results. This is understandable
because objective scores might not always be well consistent
with human subjective perception, and it only provides a
practical and effective way to optimize the systems, especially
for tuning hyper-parameters [31].

VII. CONCLUSIONS

We propose to use average voice model (AVM) with i-
vectors in DBLSTM based voice conversion framework, which
does not require parallel data between source and target
speaker for conversion. Specifically in our approach, an AVM
is trained by many other speakers’ parallel data. I-vectors,
which represent the identities of source and target speakers,
are augmented with source speech as the DBLSTM input.
Without an adaptation stage, the AVM+i-vector model can
be directly used for voice conversion: given the spectrum of
a new source speaker and his/her i-vector, along with the i-
vector of the new target speaker, the network directly generates
the corresponding spectrum for the new target speaker. Our
study shows that the proposed approach is quite effective. In
conclusion, our approach can make voice conversion greatly
convenient and flexible in real applications, meanwhile it guar-
antees reasonable quality and similarity of converted speech.
Some samples used in the listening test are available via this
link: http://www.nwpu-aslp.org/vc/apsipa-jiewu-demo.pptx.
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